Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pérez Aranda, César Antonio

  • Google
  • 1
  • 3
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Electro-mechanical properties of thermoplastic polyurethane films and tubes modified by hybrid carbon nanostructures for pressure sensing11citations

Places of action

Chart of shared publication
Cauich-Rodriguez, Juan Valerio
1 / 1 shared
Valdez-Nava, Zarel
1 / 15 shared
Aviles, Francis
1 / 4 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Cauich-Rodriguez, Juan Valerio
  • Valdez-Nava, Zarel
  • Aviles, Francis
OrganizationsLocationPeople

article

Electro-mechanical properties of thermoplastic polyurethane films and tubes modified by hybrid carbon nanostructures for pressure sensing

  • Cauich-Rodriguez, Juan Valerio
  • Valdez-Nava, Zarel
  • Aviles, Francis
  • Pérez Aranda, César Antonio
Abstract

<jats:title>Abstract</jats:title><jats:p>Electrical and piezoresistive properties of hybrid nanocomposite films and tubes made of a segmented aliphatic polyurethane modified with multilayer graphene sheets (MLGSs), multiwall carbon nanotubes (MWCNTs), and hybrid mixtures of both, were investigated. Hybrid nanocomposites were fabricated at a total weight concentration (<jats:inline-formula><jats:tex-math><?CDATA ${ _T}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Φ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="smsaba9e6ieqn1.gif" xlink:type="simple" /></jats:inline-formula>) of 5 wt.%, with relative weight concentration of MLGSs with respect to MWCNTs (<jats:inline-formula><jats:tex-math><?CDATA ${ _R})$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Φ</mml:mi><mml:mi>R</mml:mi></mml:msub></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="smsaba9e6ieqn2.gif" xlink:type="simple" /></jats:inline-formula> of 25%, 50% and 75%. The electrical conductivity of these films is dominated by the MWCNT network, observing electrical MLGS-MWCNT collaborative effects only for <jats:inline-formula><jats:tex-math><?CDATA ${ _R}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Φ</mml:mi><mml:mi>R</mml:mi></mml:msub></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="smsaba9e6ieqn3.gif" xlink:type="simple" /></jats:inline-formula> = 25%. Dielectric impedance spectroscopy indicates that the nanocomposites display capacitive effects at frequencies higher than tens of Hz, which is explained by interfacial polarization. The burst pressure and circumferential stiffness of internally pressurized tubes fabricated from these films is slightly higher for tubes containing only MWCNTs. The strain fields in the pressurized tubes, determined by digital image correlation, showed localized strain gradients, and the piezoresistive response of the electro-conductive tubes was nonlinear. The highest pressure sensitivity factor (4.59 kPa<jats:sup>−1</jats:sup>) was obtained for hybrid nanocomposite tubes with <jats:inline-formula><jats:tex-math><?CDATA ${ _R}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Φ</mml:mi><mml:mi>R</mml:mi></mml:msub></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="smsaba9e6ieqn4.gif" xlink:type="simple" /></jats:inline-formula> = 25%.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • Carbon
  • nanotube
  • interfacial
  • thermoplastic
  • electrical conductivity