People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Polewczyk, Vincent
Groupe d’Étude de la Matière Condensée
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Light-driven Electrodynamics and Demagnetization in Fe$_n$GeTe$_2$ (n = 3, 5) Thin Films
- 2024Patterning Magnonic Structures via Laser Induced Crystallization of Yittrium Iron Garnetcitations
- 2024Patterning Magnonic Structures via Laser Induced Crystallization of Yittrium Iron Garnetcitations
- 2024Thermal Treatment Effects on PMN-0.4PT/Fe Multiferroic Heterostructures
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo$_2$Al$_9$
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo 2 Al 9 (M = Sr, Ba)citations
- 2023Artificial Aging of Thin Films of the Indium-Free Transparent Conducting Oxide SrVO 3citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics M Co 2 Al 9 ( M = Sr, Ba)citations
- 2023Formation and Etching of the Insulating Sr‐Rich V 5+ Phase at the Metallic SrVO 3 Surface Revealed by Operando XAS Spectroscopy Characterizationscitations
- 2023Flat band separation and resilient spin-Berry curvature in bilayer kagome metalscitations
- 2023Formation and Etching of the Insulating Sr‐Rich V<sup>5+</sup> Phase at the Metallic SrVO<sub>3</sub> Surface Revealed by Operando XAS Spectroscopy Characterizationscitations
- 2023Flat band separation and robust spin Berry curvature in bilayer kagome metalscitations
- 2023Flat band separation and robust spin Berry curvature in bilayer kagome metalscitations
- 2022Influence of orbital character on the ground state electronic properties in the van Der Waals transition metal iodides VI3 and CrI3citations
- 2022Influence of Orbital Character on the Ground State Electronic Properties in the van Der Waals Transition Metal Iodides VI3 and CrI3citations
- 2022Influence of Orbital Character on the Ground State Electronic Properties in the van Der Waals Transition Metal Iodides VI3 and CrI3citations
- 2022Influence of orbital character on the ground state electronic properties in the van Der Waals transition metal iodides VI 3 and CrI 3citations
- 2021Evidence of robust half-metallicity in strained manganite filmscitations
- 2021Evidence of robust half-metallicity in strained manganite filmscitations
- 2020An integrated ultra-high vacuum apparatus for growth and in situ characterization of complex materialscitations
- 2019Intrinsic versus shape anisotropy in micro-structured magnetostrictive thin films for magnetic surface acoustic wave sensorscitations
- 2019Intrinsic versus shape anisotropy in micro-structured magnetostrictive thin films for magnetic surface acoustic wave sensorscitations
Places of action
Organizations | Location | People |
---|
article
Intrinsic versus shape anisotropy in micro-structured magnetostrictive thin films for magnetic surface acoustic wave sensors
Abstract
This work aims at studying the interaction between surface acoustic waves (SAW) and micro-structured magnetostrictive layers under a magnetic field with a perspective to develop magnetic field sensors. The impact of the competition between the strong intrinsic magnetic anisotropy of the magnetic material and the shape anisotropy of the interdigitated transducer (IDT) fingers introduced by the micro-structuration is investigated. Therefore, the macroscopic and microscopic magnetic properties of the IDT and their influence on the magneto-acoustic response are studied. A SAW resonator with the IDTs made of the magnetostrictive thin film was elaborated and the magnetic surface acoustic wave (MSAW) response under a magnetic field was performed and discussed. Depending on the energy balance, the anisotropy gets modified and a correlation with the MSAW sensitivity to an externally applied magnetic field is made.