People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khanbareh, Hamideh
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Porous Structure Enhances the Longitudinal Piezoelectric Coefficient and Electromechanical Coupling Coefficient of Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3citations
- 2024Porous structure enhances the longitudinal piezoelectric coefficient and electromechanical coupling coefficient of lead‐free (Ba 0.85 Ca 0.15 )(Zr 0.1 Ti 0.9 )O 3citations
- 2024Temperature-Dependent Ferroelectric Properties and Aging Behavior of Freeze-Cast Bismuth Ferrite-Barium Titanate Ceramicscitations
- 2024Temperature-Dependent Ferroelectric Properties and Aging Behavior of Freeze-Cast Bismuth Ferrite–Barium Titanate Ceramicscitations
- 2024Exploring Lead-Free Materials for Screen-Printed Piezoelectric Wearable Devicescitations
- 2023Enhancing Neural Stem Cell Stimulation with Structured Piezoelectric Compositescitations
- 2022Innovative piezo-active composites and their structure - Property relationshipscitations
- 2022Piezoelectric materials and systems for tissue engineering and implantable energy harvesting devices for biomedical applicationscitations
- 2021Additively manufactured BaTiOcitations
- 2021Additively manufactured BaTiO3 composite scaffolds: a novel strategy for load bearing bone tissue engineering applicationscitations
- 2021Additively manufactured BaTiO3 composite scaffoldscitations
- 2020Harnessing Plasticity in an Amine-Borane as a Piezoelectric and Pyroelectric Flexible Filmcitations
- 2019Piezoelectric performance of PZT-based materials with aligned porosity::experiment and modellingcitations
- 2019Experimental studies on effective properties and related parameters of piezo-particulate composites
- 2019Piezo-active composites
- 2019Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systemscitations
- 2019Modelling of the composite structure formation during dielectrophoresis
- 2019Piezoelectric performance of PZT-based materials with aligned porosity:citations
- 2018Understanding the effect of porosity on the polarisation-field response of ferroelectric materialscitations
Places of action
Organizations | Location | People |
---|
article
Piezoelectric performance of PZT-based materials with aligned porosity:
Abstract
<p>A new micromechanical model is proposed to analyse the piezoelectric properties of freeze-cast porous composite materials based on a ferroelectric lead zirconate titanate-type (PZT) ceramics. The important influence of the composite microgeometry and the porous ceramic matrix on the piezoelectric coefficients d<sup>∗</sup> <sub>3j</sub> and g<sup>∗</sup> <sub>3j</sub> and the piezoelectric anisotropy factor d<sup>∗</sup> <sub>33</sub>/|d<sup>∗</sup> <sub>31</sub> in the porosity range of m<sub>p</sub> = 0.2-0.6 is evaluated and discussed. The resulting piezoelectric parameters of parallel-connected freeze-cast composites with highly aligned pore channels are then compared to those of PZT-based porous materials with randomly distributed porosity. Due to the relatively large piezoelectric coefficients d<sup>∗</sup> <sub>33</sub> ∼ 10<sup>2</sup> pC N<sup>-1</sup>, g<sup>∗</sup> <sub>33</sub> ≈ 40-100 mV m N<sup>-1</sup>, anisotropy factor d<sup>∗</sup> <sub>33</sub>/|d<sup>∗</sup> <sub>31</sub> ≈ 3-5 and the presence of aligned porous channels, the parallel-connected freeze-cast composite has advantages over conventional monolithic PZT-type ceramics (e.g. g <sub>33</sub> = 24.2 mV m N<sup>-1</sup> and d <sub>33</sub>/|d <sub>31</sub>| = 2.2 in the PZT-5 ceramic) and is suitable for piezoelectric transducer, sensor, acoustic, and energy-harvesting applications.</p>