Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brusaterra, Enrico

  • Google
  • 3
  • 9
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Effects of post metallization annealing on Al2O3 atomic layer deposition on n-GaN7citations
  • 2023Effects of post metallization annealing on Al<sub>2</sub>O<sub>3</sub> atomic layer deposition on n-GaN7citations
  • 2022Effects of post metallization annealing on Al2O3 atomic layer deposition on n-GaNcitations

Places of action

Chart of shared publication
Bickel, Nicole
3 / 3 shared
Würfl, Joachim
3 / 3 shared
Treidel, Eldad Bahat
3 / 3 shared
Detavernier, Christophe
3 / 72 shared
Vandenbroucke, Sofie
2 / 3 shared
Hilt, Oliver
3 / 3 shared
Tadmor, Liad
3 / 3 shared
Brunner, Frank
3 / 4 shared
Vandenbroucke, Sofie S. T.
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Bickel, Nicole
  • Würfl, Joachim
  • Treidel, Eldad Bahat
  • Detavernier, Christophe
  • Vandenbroucke, Sofie
  • Hilt, Oliver
  • Tadmor, Liad
  • Brunner, Frank
  • Vandenbroucke, Sofie S. T.
OrganizationsLocationPeople

article

Effects of post metallization annealing on Al<sub>2</sub>O<sub>3</sub> atomic layer deposition on n-GaN

  • Bickel, Nicole
  • Würfl, Joachim
  • Treidel, Eldad Bahat
  • Detavernier, Christophe
  • Brusaterra, Enrico
  • Vandenbroucke, Sofie
  • Hilt, Oliver
  • Tadmor, Liad
  • Brunner, Frank
Abstract

<jats:title>Abstract</jats:title><jats:p>The chemical, physical and electrical properties and the robustness of post metallization annealed Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> atomic layers deposited on <jats:italic>n</jats:italic>-type GaN are investigated in this work. Planar metal insulator capacitors are used to demonstrate a gate-first with following ohmic contacts formation at elevated temperature up to 600 °C process flow. X-ray photoelectron spectroscopy indicates that no new bonds in the Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> layer are formed due to exposure to the elevated annealing temperature. X-ray diffraction measurements show no crystallization of the oxide layer. Atomic force microscopy shows signs of degradation of the sample annealed at 600 °C. Electrical measurements indicate that the elevated annealing temperature results in an increase of the oxide depletion and the deep depletion capacitances simultaneously, that results in a reduction of the flat band voltage to zero, which is explained by fixed oxide charges curing. A forward bias step stress capacitance measurement shows that the total number of induced trapped charges are not strongly affected by the elevated annealing temperatures. Interface trap density of states analysis shows the lowest trapping concentration for the capacitor annealed at 500 °C. Above this temperature, the interface trap density of states increases. When all results are taken into consideration, we have found that the process thermal budget allows for an overlap between the gate oxide post metallization annealing and the ohmic contact formation at 500 °C.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • atomic force microscopy
  • annealing
  • crystallization
  • curing
  • atomic layer deposition