Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kalna, Karol

  • Google
  • 3
  • 9
  • 12

Swansea University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Monte Carlo simulations of spin transport in nanoscale In_0.7Ga_0.3As transistors: temperature and size effectscitations
  • 2022Thickness Effect on the Solid-State Reaction of a Ni/GaAs System6citations
  • 2022Thickness Effect on the Solid-State Reaction of a Ni/GaAs System6citations

Places of action

Chart of shared publication
Thorpe, B.
1 / 1 shared
Schirmer, S.
1 / 1 shared
Rabhi, Selma
1 / 1 shared
Benoudia, Mohamed, Cherif
1 / 1 shared
Perrin-Pellegrino, Carine
2 / 9 shared
Oueldna, Nouredine
2 / 5 shared
Portavoce, Alain
2 / 12 shared
Hoummada, Khalid
2 / 24 shared
Benoudia, Mohamed Cherif
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Thorpe, B.
  • Schirmer, S.
  • Rabhi, Selma
  • Benoudia, Mohamed, Cherif
  • Perrin-Pellegrino, Carine
  • Oueldna, Nouredine
  • Portavoce, Alain
  • Hoummada, Khalid
  • Benoudia, Mohamed Cherif
OrganizationsLocationPeople

article

Monte Carlo simulations of spin transport in nanoscale In_0.7Ga_0.3As transistors: temperature and size effects

  • Kalna, Karol
  • Thorpe, B.
  • Schirmer, S.
Abstract

<jats:title>Abstract</jats:title><jats:p>Spin-based metal-oxide-semiconductor field-effect transistors (MOSFETs) with a high-mobility III-V channel are studied using self-consistent quantum corrected ensemble Monte Carlo device simulations of charge and spin transport. The simulations including spin–orbit coupling mechanisms (Dresselhaus and Rashba coupling) examine the electron spin transport in the 25 nm gate length <jats:inline-formula><jats:tex-math><?CDATA ${In_{0.7}Ga_{0.3}As}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mi mathvariant="normal">I</mml:mi><mml:msub><mml:mi mathvariant="normal">n</mml:mi><mml:mrow><mml:mn>0.7</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant="normal">G</mml:mi><mml:msub><mml:mi mathvariant="normal">a</mml:mi><mml:mrow><mml:mn>0.3</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant="normal">A</mml:mi><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="sstac70f0ieqn2.gif" xlink:type="simple" /></jats:inline-formula> MOSFET. The transistor lateral dimensions (the gate length, the source-to-gate, and the gate-to-drain spacers) are increased to investigate the spin-dependent drain current modulation induced by the gate from room temperature of 300 K down to 77 K. This modulation increases with increasing temperature due to increased Rashba coupling. Finally, an increase of up to 20 nm in the gate length, source-to-gate, or the gate-to-drain spacers increases the spin polarization and enhances the spin-dependent drain current modulation at the drain due to polarization-refocusing effects.</jats:p>

Topics
  • mobility
  • simulation
  • semiconductor
  • spin polarization