People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kalna, Karol
Swansea University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
Monte Carlo simulations of spin transport in nanoscale In_0.7Ga_0.3As transistors: temperature and size effects
Abstract
<jats:title>Abstract</jats:title><jats:p>Spin-based metal-oxide-semiconductor field-effect transistors (MOSFETs) with a high-mobility III-V channel are studied using self-consistent quantum corrected ensemble Monte Carlo device simulations of charge and spin transport. The simulations including spin–orbit coupling mechanisms (Dresselhaus and Rashba coupling) examine the electron spin transport in the 25 nm gate length <jats:inline-formula><jats:tex-math><?CDATA ${In_{0.7}Ga_{0.3}As}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mi mathvariant="normal">I</mml:mi><mml:msub><mml:mi mathvariant="normal">n</mml:mi><mml:mrow><mml:mn>0.7</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant="normal">G</mml:mi><mml:msub><mml:mi mathvariant="normal">a</mml:mi><mml:mrow><mml:mn>0.3</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant="normal">A</mml:mi><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="sstac70f0ieqn2.gif" xlink:type="simple" /></jats:inline-formula> MOSFET. The transistor lateral dimensions (the gate length, the source-to-gate, and the gate-to-drain spacers) are increased to investigate the spin-dependent drain current modulation induced by the gate from room temperature of 300 K down to 77 K. This modulation increases with increasing temperature due to increased Rashba coupling. Finally, an increase of up to 20 nm in the gate length, source-to-gate, or the gate-to-drain spacers increases the spin polarization and enhances the spin-dependent drain current modulation at the drain due to polarization-refocusing effects.</jats:p>