Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wanitzek, Maurice

  • Google
  • 2
  • 12
  • 8

University of Stuttgart

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Two-dimensional hole gases in SiGeSn alloys8citations
  • 2022Monolithic Integration of Gesn on Si for IR Camera Demonstrationcitations

Places of action

Chart of shared publication
Oehme, Michael
2 / 9 shared
Weißhaupt, David
1 / 3 shared
Kasper, Erich
1 / 1 shared
Schwarz, Daniel
2 / 11 shared
Hersperger, Tim
1 / 1 shared
Sigle, Eric
1 / 1 shared
Burghartz, Joachim
1 / 2 shared
Kaschel, Mathias
1 / 1 shared
Epple, Steffen
1 / 1 shared
Schad, Lena
1 / 1 shared
Hack, Michael
1 / 2 shared
Yu, Zili
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Oehme, Michael
  • Weißhaupt, David
  • Kasper, Erich
  • Schwarz, Daniel
  • Hersperger, Tim
  • Sigle, Eric
  • Burghartz, Joachim
  • Kaschel, Mathias
  • Epple, Steffen
  • Schad, Lena
  • Hack, Michael
  • Yu, Zili
OrganizationsLocationPeople

article

Two-dimensional hole gases in SiGeSn alloys

  • Oehme, Michael
  • Weißhaupt, David
  • Kasper, Erich
  • Schwarz, Daniel
  • Hersperger, Tim
  • Wanitzek, Maurice
  • Sigle, Eric
Abstract

<jats:title>Abstract</jats:title><jats:p>Two-dimensional hole gases are demonstrated in modulation doped Si<jats:italic><jats:sub>x</jats:sub></jats:italic>Ge<jats:sub>1−<jats:italic>x</jats:italic>−<jats:italic>y</jats:italic></jats:sub>Sn<jats:italic><jats:sub>y</jats:sub></jats:italic> quantum wells (QWs), which are embedded in Si<jats:sub>0.2</jats:sub>Ge<jats:sub>0.8</jats:sub> barrier layers. The modulation doped QW structures are fabricated with molecular beam epitaxy on a thin (100 nm) virtual SiGe substrate on a (001) oriented Si substrate. The virtual substrate (VS) concept utilizes the Si diffusion into an as- grown thin, strain relaxed Ge layer during a following annealing step. The lateral lattice spacing of the SiGe-VS could be varied by the annealing temperature in the range between 830 °C and 860 °C. Half-hour anneal at 848 °C results in nearly strain free growth for the following Si<jats:sub>0.2</jats:sub>Ge<jats:sub>0.8</jats:sub> barrier layer. Boron doping above an undoped 10 nm spacer on top of the 15 nm QW provides a reservoir for hole transfer from the barrier to the well. Electrical conductivity, sheet hole density ps and mobility are measured as function of temperature. In all investigated Si<jats:italic><jats:sub>x</jats:sub></jats:italic>Ge<jats:sub>1−<jats:italic>x</jats:italic>−<jats:italic>y</jats:italic></jats:sub>Sn<jats:italic><jats:sub>y</jats:sub></jats:italic> channels the Hall measurements show the typical freeze out of holes outside the QW. Alloy scattering dominates the low-temperature mobility by adding Sn or Si to the Ge reference well. A linear relationship for the charge transfer from the modulation doping into the undoped Si<jats:italic><jats:sub>x</jats:sub></jats:italic>Ge<jats:sub>1−<jats:italic>x</jats:italic>−<jats:italic>y</jats:italic></jats:sub>Sn<jats:italic><jats:sub>y</jats:sub></jats:italic> channel as function of the lattice mismatch between the channel material and the matrix material could be found at low-temperatures (8 K). An analytical model for this charge transfer confirms the nearly linear relationship by considering the triangular shape of the potential in modulation doped QW structures.</jats:p>

Topics
  • density
  • mobility
  • Boron
  • two-dimensional
  • annealing
  • electrical conductivity