People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Heinzig, André
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Single-step reactive ion etching process for device integration of hafnium-zirconium-oxide (HZO)/titanium nitride (TiN) stacks
Abstract
The integration of new materials such as high-k dielectrics or metals into advanced CMOS gate stacks has led to major developments in plasma etching. The authors present a study which is dedicated to the etching of amorphous hafnium zirconium oxide (HZO) and titanium nitride (TiN) layers with Ar/Cl2 chemistry in one single step. By adjusting the gas ratio and the inductively coupled plasma power, the etching process is shown to have a slow and well controllable etch rate for HZO and TiN. Additionally, a high selectivity between both materials and SiO2 can be achieved. Gate stack etching was successfully demonstrated and transmission electron microscopy-images revealed good anisotropic etching for HZO and TiN with an etch stop in SiO2 without damaging the silicon underneath. The process is further applied for the fabrication of metal-ferroelectric-metal capacitors, here TiN-HZO-TiN, and the feasibility of the chosen material combination is proven by electrical characterization. The strategy of using low temperature plasma-enhanced atomic layer deposition for TiN-deposition and forming gas anneal after structuring leads to high remanent polarization-values.