People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pohl, Darius
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Eco‐Friendly Approach to Ultra‐Thin Metal Oxides‐ Solution Sheared Aluminum Oxide for Half‐Volt Operation of Organic Field‐Effect Transistorscitations
- 2024Eco‐Friendly Approach to Ultra‐Thin Metal Oxides‐ Solution Sheared Aluminum Oxide for Half‐Volt Operation of Organic Field‐Effect Transistorscitations
- 2023Tailoring the Morphology of a Diketopyrrolopyrrole-based Polymer as Films or Wires for High-Performance OFETs using Solution Shearingcitations
- 2023Tunable Crystallinity and Electron Conduction in Wavy 2D Conjugated Metal–Organic Frameworks via Halogen Substitutioncitations
- 2022Atomic layer deposition of yttrium iron garnet thin filmscitations
- 2021Single-step reactive ion etching process for device integration of hafnium-zirconium-oxide (HZO)/titanium nitride (TiN) stackscitations
- 2021Controlled Silicidation of Silicon Nanowires Using Flash Lamp Annealingcitations
- 2020Control of positive and negative magnetoresistance in iron oxide−iron nanocomposite thin films for tunable magnetoelectric nanodevicescitations
- 2020Heterostructured Bismuth Telluride Selenide Nanosheets for Enhanced Thermoelectric Performance
- 2020Control of Positive and Negative Magnetoresistance in Iron Oxide : Iron Nanocomposite Thin Films for Tunable Magnetoelectric Nanodevices
- 2020Natural hybrid silica/protein superstructure at atomic resolutioncitations
- 2014Local band gap measurements by VEELS of thin film solar cellscitations
Places of action
Organizations | Location | People |
---|
article
Single-step reactive ion etching process for device integration of hafnium-zirconium-oxide (HZO)/titanium nitride (TiN) stacks
Abstract
The integration of new materials such as high-k dielectrics or metals into advanced CMOS gate stacks has led to major developments in plasma etching. The authors present a study which is dedicated to the etching of amorphous hafnium zirconium oxide (HZO) and titanium nitride (TiN) layers with Ar/Cl2 chemistry in one single step. By adjusting the gas ratio and the inductively coupled plasma power, the etching process is shown to have a slow and well controllable etch rate for HZO and TiN. Additionally, a high selectivity between both materials and SiO2 can be achieved. Gate stack etching was successfully demonstrated and transmission electron microscopy-images revealed good anisotropic etching for HZO and TiN with an etch stop in SiO2 without damaging the silicon underneath. The process is further applied for the fabrication of metal-ferroelectric-metal capacitors, here TiN-HZO-TiN, and the feasibility of the chosen material combination is proven by electrical characterization. The strategy of using low temperature plasma-enhanced atomic layer deposition for TiN-deposition and forming gas anneal after structuring leads to high remanent polarization-values.