Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Panda, D.

  • Google
  • 1
  • 6
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Synaptic behaviour of TiO x/HfO2RRAM enhanced by inserting ultrathin Al2O3layer for neuromorphic computing26citations

Places of action

Chart of shared publication
Chandrasekharan, S.
1 / 1 shared
Pradhan, A.
1 / 1 shared
Sze, S. M.
1 / 1 shared
Pattanayak, B.
1 / 1 shared
Tseng, Tseung-Yuen
1 / 14 shared
Chu, C. A.
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Chandrasekharan, S.
  • Pradhan, A.
  • Sze, S. M.
  • Pattanayak, B.
  • Tseng, Tseung-Yuen
  • Chu, C. A.
OrganizationsLocationPeople

article

Synaptic behaviour of TiO x/HfO2RRAM enhanced by inserting ultrathin Al2O3layer for neuromorphic computing

  • Chandrasekharan, S.
  • Pradhan, A.
  • Sze, S. M.
  • Pattanayak, B.
  • Tseng, Tseung-Yuen
  • Chu, C. A.
  • Panda, D.
Abstract

<p>The synaptic linearity of resistive random-access memory (RRAM) based on TiO x /HfO2 improved by inserting an ultrathin Al2O3 layer is investigated. A gradual bipolar switching with a positive set and a negative reset is observed for devices with an Al2O3 layer after an electroforming process. The devices with a 1 nm Al2O3 layer exhibit acceptable reliability with &gt;400 cycles DC endurance with no decrement of the on/off ratio after 104 sec. A remarkable enhancement in the synaptic linearity of potentiation 2.15 and depression 1.52 is achieved in this device. The conduction mechanisms at different current regions of the optimized device are studied. The presence of the Al2O3 layer is confirmed by x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy analyses. About 42% of the oxygen vacancy concentration calculated from the XPS spectra is responsible for the synaptic properties. This synaptic RRAM structure is suitable for upcoming neuromorphic computing devices. </p>

Topics
  • impedance spectroscopy
  • x-ray photoelectron spectroscopy
  • Oxygen
  • transmission electron microscopy
  • random
  • size-exclusion chromatography
  • vacancy