People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Almuneau, Guilhem
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2025Near-infrared transparent conductive electrodes based on composite GaAs-metal deep sub-wavelength high contrast grating
- 2023Oxidation of III-V semiconductors and applications ; Oxydation des semiconducteurs III-V et applications
- 2023Two birds with one tool: using thermocompression for both metallic contact annealing and wafer bonding of GaAs solar cells ; Faire d'une pierre deux coups : utilisation de la thermocompression pour le recuit des contacts métalliques et le collage de cellules solaires en GaAs
- 2019Controlled Oxidation of III-V Semiconductors for Photonic Devices
- 2019Interband cascade Lasers with AlGaAsSb cladding layers emitting at 3.3 µmcitations
- 2019Towards MIR VCSELs operating in CW at RT
- 2019Interband cascade Lasers with AlGaAsSb cladding layers emitting at 3.3 µmcitations
- 2019Electro-Absorption Modulator vertically integrated on a VCSEL: microstrip-based high-speed electrical injection on top of a BCB layercitations
- 2018Anisotropy in the wet thermal oxidation of AlGaAs: influence of process parameterscitations
- 2018Modelling anisotropic lateral oxidation from circular mesascitations
- 2018Coupled-mode analysis of vertically-coupled AlGaAs/AlOx microdisk resonatorscitations
- 2017Oxide-confined VCSELs fabricated with a simple self-aligned process flowcitations
- 2017Coupled mode analysis of micro-disk resonators with an asymmetric- index-profile coupling region
- 2017Single lithography-step self-aligned fabrication process for Vertical-Cavity Surface-Emitting Laserscitations
- 2017Pseudomorphic and metamorphic (Al)GaAsSb/(Al)InGaAs tunnel junctions for GaAs based Multi-Junction Solar Cells
- 2017Buried Waveguides using a Quasi-Planar Process
- 2017Anisotropic oxidation of circular mesas for complex confinement in photonic devices: Experiments and modelling
- 2016III-V-semiconductor vertically-coupled whispering-gallery mode resonators made by selective lateral oxidation
- 2016Self-aligned BCB planarization method for high frequency signal injection in a VCSEL with an integrated modulatorcitations
- 2015Vertically Coupled Microdisk Resonators Using AlGaAs/AlOx Technologycitations
- 2015AlOx/AlGaAs technology for multi-plane integrated photonic devices
- 2014Efficient excitation of photoluminescence in a two-dimensional waveguide consisting of a quantum dot-polymer sandwich-type structurecitations
- 2008Real-time in-situ monitoring of wet thermal oxidation for precise confinement in VCSELscitations
Places of action
Organizations | Location | People |
---|
article
Oxide-confined VCSELs fabricated with a simple self-aligned process flow
Abstract
We propose a simplified and easier fabrication process flow for the manufacturing of AlOx-confined VCSELs based on combining the oxidation step with a self-aligned process, allowing the mesa etching and two successive lift-off steps based on a single lithography step. The electro-optical confinement achieved by standard lateral oxidation enables a low threshold and a single mode behaviour for the VCSEL. This simplified process can largely improve VCSEL manufacturing by reducing the processing time and costs compared to the standard VCSEL process. Introduction: Vertical-cavity surface-emitting lasers (VCSEL) have become the preferred light sources in many photonic systems, enabling short-link interconnections [1] but also in other emerging mass-market applications like sensing and detection [2]. The large production volume of VCSELs would benefit from a simplification of the manufacturing process flow that may largely increase the cost-effectiveness. Indeed, compared to the LED and LDs, the VCSEL fabrication process flow requires a large number of elementary steps defined by successive inter-aligned photolithography levels. A precision in the micron range is required to ensure the lateral alignment between the optical waveguide and the electrical injection. For these reasons, one of the most important concerns for the VCSEL manufacturers is to improve the production throughput by lowering the fabrication time and cost per wafer. The development of a self-aligned process is of great interest as already demonstrated for the fabrication of high performance HBT transistors or ridge lasers [3,4]. To that extent, Al-Omari [5] used a top metallic contact deposited over a photoresist layer as a hard mask to dry-etch the VCSEL mesa. Chua [6] developed a pseudo-planar approach by opening via holes down to the AlAs layer to carry out the lateral oxidation. This process has subsequently been improved by Strzelecka [7] to increase the device density. Recently, we have shown that air-post VCSELs could be created using an innovative self-aligned process, which combined several masking and lift-off steps defined by a single lithographic step [8]. In this paper, we extend this work and propose a new process flow to fabricate, in a very simple and straightforward way, the widely-used oxide-confined VCSELs. The demonstrated process drastically simplifies the oxide-confined VCSEL fabrication by reducing the total number of lithographic alignment steps from four or more to only one alignment, with the additional advantage of relieving the required tolerances. This process flow, most suitable for 3D imaging and sensing applications, can also be easily implemented for the fabrication of other optoelectronic devices such as modulators, ridge waveguide lasers, detectors, solar cells or any process combining dry etch, passivation and metallization.