Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Minea, Tiberiu

  • Google
  • 14
  • 51
  • 235

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2024Vapor chemical composition in Electron Beam Powder Bed Fusion using Ti-6Al-4V powdercitations
  • 2023Impact of self-sputtering in high power impulse magnetron sputtering (HiPIMS) with helium4citations
  • 2023Spatiotemporal characterization of evaporated atoms during electron beam melting additive manufacturing by advanced laser diagnostics6citations
  • 2023The Use of Sacrificial Graphite-like Coating to Improve Fusion Efficiency of Copper in Selective Laser Melting2citations
  • 2022Saturation pressure of nonequilibrium titanium evaporation during additive manufacturing by electron powder bed fusion6citations
  • 2022Saturation pressure of nonequilibrium titanium evaporation during additive manufacturing by electron powder bed fusion6citations
  • 2021Modeling of high power impulse magnetron sputtering discharges with graphite target5citations
  • 2021Behavior of high current density pulsed magnetron discharge with a graphite target5citations
  • 2021Phototribology: control of friction by light12citations
  • 2020Low resistivity amorphous carbon-based thin films employed as anti-reflective coatings on copper8citations
  • 2019Tuning high power impulse magnetron sputtering discharge and substrate bias conditions to reduce the intrinsic stress of TiN thin films43citations
  • 2018Influence of backscattered neutrals on the grain size of magnetron-sputtered TaN thin films30citations
  • 2017Benefits of energetic ion bombardment for tailoring stress and microstructural evolution during growth of Cu thin films63citations
  • 2017Epitaxial growth of Cu(001) thin films onto Si(001) using a single-step HiPIMS process45citations

Places of action

Chart of shared publication
El Farsy, Abderzak
4 / 4 shared
Antunes, Vinicius
1 / 1 shared
Petit-Etienne, Camille
1 / 9 shared
Chapon, Patrick
2 / 17 shared
Vasilovici, Ovidiu
1 / 1 shared
Ballage, Charles
6 / 6 shared
Crespi, Angela
1 / 1 shared
Pargon, Erwine
1 / 10 shared
Morel, Erwan
3 / 3 shared
Rozier, Yoann
3 / 3 shared
Tighidet, Essaid Chakib
1 / 1 shared
Nordet, Guillaume
1 / 2 shared
Crespi, Ângela Elisa
2 / 3 shared
Hugon, Marie-Christine
2 / 2 shared
Peyre, Patrice
1 / 55 shared
Schiesko, Loic
1 / 2 shared
Antunes, Vinicius G.
1 / 1 shared
Seznec, Benjamin
2 / 2 shared
Schiesko, Loïc
1 / 1 shared
Farsy, Abderzak, El
1 / 1 shared
Antunes, Vinicius, G.
1 / 1 shared
Creusot, Christophe
2 / 2 shared
Bazinette, Remy
2 / 2 shared
Forchard, Thomas
2 / 2 shared
Girodet, Alain
2 / 2 shared
Ballages, Charles
2 / 2 shared
Echeverrigaray, Fernando G.
1 / 2 shared
Cemin, Felipe
4 / 6 shared
Cammarata, Antonio
1 / 3 shared
Michels, Alexandre F.
1 / 1 shared
Perotti, Bruna L.
1 / 1 shared
Leidens, Leonardo M.
1 / 1 shared
Alvarez, Fernando
1 / 3 shared
Figueroa, Carlos A.
1 / 3 shared
Polcar, Tomas
1 / 28 shared
Sales De Mello, Saron R.
1 / 1 shared
Robert, Jacques
1 / 1 shared
Alvarez, José
1 / 17 shared
Hugon, Marie Christine
1 / 1 shared
Vickridge, Ian
1 / 17 shared
Lundin, Daniel
5 / 24 shared
Abadias, Grégory
1 / 15 shared
Foy, Eddy
1 / 15 shared
Debongnie, Mathieu
1 / 1 shared
Rudolph, Martin
1 / 8 shared
Brisset, François
1 / 50 shared
Solas, Denis
1 / 6 shared
Abadias, Gregory
2 / 14 shared
Furgeaud, Clarisse
2 / 4 shared
Michel, Anny
1 / 5 shared
Amiard, Guillaume
1 / 3 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2017

Co-Authors (by relevance)

  • El Farsy, Abderzak
  • Antunes, Vinicius
  • Petit-Etienne, Camille
  • Chapon, Patrick
  • Vasilovici, Ovidiu
  • Ballage, Charles
  • Crespi, Angela
  • Pargon, Erwine
  • Morel, Erwan
  • Rozier, Yoann
  • Tighidet, Essaid Chakib
  • Nordet, Guillaume
  • Crespi, Ângela Elisa
  • Hugon, Marie-Christine
  • Peyre, Patrice
  • Schiesko, Loic
  • Antunes, Vinicius G.
  • Seznec, Benjamin
  • Schiesko, Loïc
  • Farsy, Abderzak, El
  • Antunes, Vinicius, G.
  • Creusot, Christophe
  • Bazinette, Remy
  • Forchard, Thomas
  • Girodet, Alain
  • Ballages, Charles
  • Echeverrigaray, Fernando G.
  • Cemin, Felipe
  • Cammarata, Antonio
  • Michels, Alexandre F.
  • Perotti, Bruna L.
  • Leidens, Leonardo M.
  • Alvarez, Fernando
  • Figueroa, Carlos A.
  • Polcar, Tomas
  • Sales De Mello, Saron R.
  • Robert, Jacques
  • Alvarez, José
  • Hugon, Marie Christine
  • Vickridge, Ian
  • Lundin, Daniel
  • Abadias, Grégory
  • Foy, Eddy
  • Debongnie, Mathieu
  • Rudolph, Martin
  • Brisset, François
  • Solas, Denis
  • Abadias, Gregory
  • Furgeaud, Clarisse
  • Michel, Anny
  • Amiard, Guillaume
OrganizationsLocationPeople

article

Behavior of high current density pulsed magnetron discharge with a graphite target

  • Creusot, Christophe
  • Bazinette, Remy
  • Minea, Tiberiu
  • Morel, Erwan
  • Forchard, Thomas
  • Rozier, Yoann
  • Girodet, Alain
  • Ballages, Charles
Abstract

<jats:title>Abstract</jats:title><jats:p>Conventional magnetron discharge with a graphite target is a technology used worldwide to deposit thin films for a large range of applications. In the last decade, the high current density sputtering regime stands out as a very interesting alternative allowing the tailoring of coating properties. The peak power density normalized to the target area can exceed 10<jats:sup>7</jats:sup> W m<jats:sup>−2</jats:sup>, leading to an important ionization of the sputtered atoms. In this paper we focused on the electrical characterization of a magnetized plasma operated at average gas pressure (5 Pa; Ar and He) with a graphite target. A cross-correlation with a high-speed gated camera and optical emission spectroscopy measurements of the plasma evolution is also given. The analysis of the plasma–surface interaction zone on the target unveiled the physical mechanisms associated with the high current density range (1.8–32.5 A cm<jats:sup>−2</jats:sup>), corresponding to several regimes of discharge. For graphite, it will be demonstrated that the gas rarefaction induced by the vapor wind is negligible due to its low sputtering yield. Thus, the gas recycling is the dominant mechanism sustaining the discharge, even for the higher discharge current regime when a spot is present. Spokes and other instabilities were also identified and are discussed.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • thin film
  • current density