Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Westerhof, Egbert

  • Google
  • 2
  • 7
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Quantifying electron cyclotron power deposition broadening in DIII-D and the potential consequences for the ITER EC system12citations
  • 2023SOLPS-ITER simulations of a vapour box design for the linear device Magnum-PSI2citations

Places of action

Chart of shared publication
Slief, Jelle
1 / 1 shared
Van Kampen, Ricky
1 / 1 shared
Van Dijk, Jan
1 / 1 shared
Van Berkel, Matthijs
1 / 2 shared
Brookman, M. W.
1 / 1 shared
Gonzalez, J.
1 / 17 shared
Morgan, Thomas
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Slief, Jelle
  • Van Kampen, Ricky
  • Van Dijk, Jan
  • Van Berkel, Matthijs
  • Brookman, M. W.
  • Gonzalez, J.
  • Morgan, Thomas
OrganizationsLocationPeople

article

SOLPS-ITER simulations of a vapour box design for the linear device Magnum-PSI

  • Gonzalez, J.
  • Westerhof, Egbert
  • Morgan, Thomas
Abstract

<jats:title>Abstract</jats:title><jats:p>A vapour box (VB) is a physical device currently being considered to reduce the high heat and particle fluxes typically impacting the divertor in tokamaks. This system usually consists of a series of boxes that retains neutral particles to increase the amount of collision events with the impacting plasma. The neutral particles come from recycling and recombination of the plasma, gas puffing inside the box and by the evaporation of a liquid metal, typically Li or Sn. Currently, an VB is being constructed for testing in the linear plasma generator Magnum-PSI, operated at DIFFER. Its modular design will allow for open (not enclosing the target) and closed (enclosing the target) configurations, as well as evaporating a liquid metal to create a vapour cloud inside the box. The experiments carried out with this device will investigate its capabilities to reduce the plasma flux towards the target. This work presents a numerical study performed with SOLPS-ITER about the effectiveness of the current VB design in its open configuration to retain neutrals and its effect on the plasma beam properties. This is a first step before validation against experiments and studying closed configurations to ensure that the VB can successfully operate in a wide range of plasma parameters. Simulations show that the VB is capable of retaining neutrals and reducing fluxes to the target without requiring additional gas puffing in High and Low plasma flux scenarios. When lithium is evaporated from inside the box, the hydrogen plasma is completely extinguished and replaced by a low temperature Li plasma with lower flux. The fraction of Li and Li<jats:sup>+</jats:sup> transported upstream the VB is three orders of magnitude below the amount evaporated form the central box, as most of the lithium is condensed in the side boxes and another small portion (two orders of magnitude below the amount evaporated) is deposited on the target. The VB design in its open configuration can mitigate incoming plasma peak heat flux by <jats:inline-formula><jats:tex-math><?CDATA $0.6~{MW}\,{m}^{-2}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mn>0.6</mml:mn><mml:mtext> </mml:mtext><mml:mrow><mml:mi mathvariant="normal">M</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ppcfacc8faieqn1.gif" xlink:type="simple" /></jats:inline-formula>, which represents a fraction of <jats:inline-formula><jats:tex-math><?CDATA $75\%$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mn>75</mml:mn><mml:mi mathvariant="normal">%</mml:mi></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ppcfacc8faieqn2.gif" xlink:type="simple" /></jats:inline-formula> and <jats:inline-formula><jats:tex-math><?CDATA $81\%$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mn>81</mml:mn><mml:mi mathvariant="normal">%</mml:mi></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ppcfacc8faieqn3.gif" xlink:type="simple" /></jats:inline-formula> for the High and Low flux scenarios. This effect is expected to be higher when a closed configuration is employed, which could result in a significant reduction of heat fluxes on the divertor of tokamaks once that this design is extrapolated to the toroidal geometry, with just a minimal amount of Li and Li<jats:sup>+</jats:sup> reaching the core.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • Hydrogen
  • Lithium
  • evaporation