Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tavana, Parysatis

  • Google
  • 1
  • 16
  • 69

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020High-current laser-driven beams of relativistic electrons for high energy density research69citations

Places of action

Chart of shared publication
Zahn, N.
1 / 5 shared
Kantsyrev, A.
1 / 4 shared
Bogdanov, A.
1 / 5 shared
Borisenko, N. G.
1 / 6 shared
Neumayer, P.
1 / 5 shared
Günther, M. M.
1 / 4 shared
Pukhov, A.
1 / 4 shared
Andreev, N. E.
1 / 7 shared
Gyrdymov, M.
1 / 5 shared
Consoli, Fabrizio
1 / 1 shared
Panyushkin, V.
1 / 4 shared
Popov, V. S.
1 / 3 shared
Rosmej, Olga N.
1 / 1 shared
Shen, X. F.
1 / 3 shared
Zähter, S.
1 / 5 shared
Skobliakov, A.
1 / 4 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Zahn, N.
  • Kantsyrev, A.
  • Bogdanov, A.
  • Borisenko, N. G.
  • Neumayer, P.
  • Günther, M. M.
  • Pukhov, A.
  • Andreev, N. E.
  • Gyrdymov, M.
  • Consoli, Fabrizio
  • Panyushkin, V.
  • Popov, V. S.
  • Rosmej, Olga N.
  • Shen, X. F.
  • Zähter, S.
  • Skobliakov, A.
OrganizationsLocationPeople

article

High-current laser-driven beams of relativistic electrons for high energy density research

  • Zahn, N.
  • Kantsyrev, A.
  • Bogdanov, A.
  • Borisenko, N. G.
  • Tavana, Parysatis
  • Neumayer, P.
  • Günther, M. M.
  • Pukhov, A.
  • Andreev, N. E.
  • Gyrdymov, M.
  • Consoli, Fabrizio
  • Panyushkin, V.
  • Popov, V. S.
  • Rosmej, Olga N.
  • Shen, X. F.
  • Zähter, S.
  • Skobliakov, A.
Abstract

e report on enhanced laser driven electron beam generation in the multi MeV energy range that promises a tremendous increase of the diagnostic potential of high energy sub-PW and PW-class laser systems. In the experiment, an intense sub-picosecond laser pulse of ∼10 19 Wcm −2 intensity propagates through a plasma of near critical electron density (NCD) and drives the direct laser acceleration (DLA) of plasma electrons. Low-density polymer foams were used for the production of hydrodynamically stable long-scale NCD-plasmas. Measurements show that relativistic electrons generated in the DLA-process propagate within a half angle of <?CDATA $1$?> 1 2 ± 1° to the laser axis. Inside this divergence cone, an effective electron temperature of 10–13 MeV and a maximum of the electron energy of 100 MeV were reached. The high laser energy conversion efficiency into electrons with energies above 2 MeV achieved 23% with a total charge approaching 1 μ C. For application purposes, we used the nuclear activation method to characterize the MeV bremsstrahlung spectrum produced in the interaction of the high-current relativistic electrons with high-Z samples and measured top yields of gamma-driven nuclear reactions. The optimization of the high-Z target geometry predicts an ultra-high MeV photon number of ∼10 12 per shot at moderate relativistic laser intensity of 10 19 Wcm −2 . A good agreement between the experimental data and the results of the 3D-PIC and GEANT4-simulations was demonstrated.

Topics
  • density
  • polymer
  • energy density
  • experiment
  • simulation
  • activation