Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bierling, Bart

  • Google
  • 1
  • 4
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Monitoring the respiratory rate of preterm infants using an ultrathin film sensor embedded in the bedding16citations

Places of action

Chart of shared publication
Andriessen, Peter
1 / 1 shared
Van Pul, Carola
1 / 1 shared
Feijs, Loe
1 / 2 shared
Joshi, Rohan
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Andriessen, Peter
  • Van Pul, Carola
  • Feijs, Loe
  • Joshi, Rohan
OrganizationsLocationPeople

article

Monitoring the respiratory rate of preterm infants using an ultrathin film sensor embedded in the bedding

  • Andriessen, Peter
  • Van Pul, Carola
  • Bierling, Bart
  • Feijs, Loe
  • Joshi, Rohan
Abstract

<p>Objective: To determine the feasibility of unobtrusively monitoring the respiratory rate (RR) in preterm infants by using a film-like pressure sensor placed between the mattress and the bedding. Approach: The RR was simultaneously measured by processing the chest impedance (CI) and the ballistographic (BSG) signal acquired from the pressure sensor in 10 preterm infants of varying body weight. Nearly 27 h of data were analyzed from these infants while in different body positions including both spontaneously breathing infants and those receiving non-invasive respiratory support. Main results: The RR acquired from the BSG signal (RR-BSG) was significantly correlated (r = 0.74) to the RR derived from the CI (RR-CI) with narrow 95% limits of agreement (10 breaths min<sup>-1</sup>). A subanalysis of epochs most and least affected by infant movement yielded comparable results. Significance: Irrespective of body weight or infant position, unobtrusively monitoring the RR of preterm infants is feasible using film-like pressure sensors.</p>

Topics
  • impedance spectroscopy
  • chemical ionisation