Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumar, Deepak

  • Google
  • 17
  • 98
  • 296

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2024Tuning thermal and structural properties of nano‐filled <scp>PDMS</scp> elastomer2citations
  • 2024Exploring enhanced structural and dielectric properties in Ag-Doped Sr(NiNb) 0.5 O 3 perovskite ceramic for advanced energy storage8citations
  • 2023Manufacturing of aluminium metal matrix composites by high pressure torsion.citations
  • 2023Effect of nanoscale interface modification on residual stress evolution during composite processing6citations
  • 2023Wear behavior of bare and coated 18Cr8Ni turbine steel exposed to sediment erosion: A comparative analysis4citations
  • 2023Metal‐based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy40citations
  • 2022The progress and roadmap of metal–organic frameworks for high-performance supercapacitors84citations
  • 2022ProTheRaMon - a GATE simulation framework for proton therapy range monitoring using PET imaging12citations
  • 2021New Insight into the development of deformation texture in face-centered cubic materialcitations
  • 2021Reversal of favorable microstructure under plastic ploughing vs. interfacial shear induced wear in aged Co1.5CrFeNi1.5Ti0.5 high-entropy alloy16citations
  • 2021Microstructural anisotropy in Electron Beam Melted 316L stainless steelscitations
  • 2020Towards an improved understanding of plasticity, friction and wear mechanisms in precipitate containing AZ91 Mg alloy18citations
  • 2020Towards an improved understanding of plasticity, friction and wear mechanisms in precipitate containing AZ91 Mg alloy18citations
  • 2020Tip Induced Growth of Zinc Oxide Nanoflakes Through Electrochemical Discharge Deposition Process and Their Optical Characterizationcitations
  • 2019Thin film growth by combinatorial epitaxy for electronic and energy applications ; Croissance de couches minces par épitaxie combinatoire pour applications énergétiques et électroniquescitations
  • 2016POLYVINYL BUTYRAL (PVB), VERSETILE TEMPLATE FOR DESIGNING NANOCOMPOSITE/COMPOSITE MATERIALS:A REVIEW42citations
  • 2014Soft Colloidal Scaffolds Capable of Elastic Recovery after Large Compressive Strains46citations

Places of action

Chart of shared publication
Rizwee, Mumtaz
1 / 1 shared
Kumar, Rahul
1 / 8 shared
Mandal, Swaroop Kumar
1 / 1 shared
Tayari, Faouzia
1 / 4 shared
Graça, M. P. F.
1 / 15 shared
Teixeira, S. Soreto
1 / 4 shared
Thakur, Priyanka
1 / 1 shared
Nassar, Kais Iben
1 / 4 shared
Essid, Manel
1 / 4 shared
Benamara, Majdi
1 / 7 shared
Lal, Madan
1 / 1 shared
Al-Haik, Marwan
1 / 1 shared
Dusabimana, Marie Claire
1 / 1 shared
Namilae, Sirish
1 / 2 shared
Gupta, Avi
1 / 1 shared
Goyal, Rahul
1 / 2 shared
Pandey, Ashwin
1 / 1 shared
Shukla, Monu Kumar
1 / 1 shared
Chellappan, Dinesh K.
1 / 1 shared
Singh, Sachin Kumar
1 / 2 shared
Dua, Kamal
1 / 3 shared
Tonk, Rajiv K.
1 / 1 shared
Jayaprakash, Gururaj K.
1 / 1 shared
Sharma, Abhishek Kumar
1 / 1 shared
Bhattacharyya, Sanjib
1 / 1 shared
Ahmed, Faheem
1 / 1 shared
Lokhande, P. E.
1 / 1 shared
Chakrabarti, Sandip
1 / 3 shared
Sharma, Ajit
1 / 1 shared
Toncu, Dana Cristina
1 / 1 shared
Singh, Jashanpreet
1 / 2 shared
Tiwari, Ashutosh
1 / 5 shared
Kulkarni, Sahana
1 / 1 shared
Pathan, H. M.
1 / 1 shared
Sindhu, Monika
1 / 1 shared
Kumar, Anupam
1 / 2 shared
Kumar Mishra, Yogendra
1 / 3 shared
Syväjärvi, Mikael
1 / 12 shared
Suwas, Satyam
2 / 21 shared
Jain, Jayant
3 / 13 shared
Yeh, An Chou
1 / 6 shared
Chang, Yao Jen
1 / 6 shared
Meena, Durgesh K.
1 / 1 shared
Jaishri, B.
1 / 1 shared
Neelakantan, Suresh
1 / 8 shared
Gosvami, Nitya Nand
3 / 7 shared
Goel, Saurav
1 / 50 shared
Bajpai, Vivek
1 / 2 shared
Bishwakarma, Harish
1 / 1 shared
Kumar, Mohan
1 / 2 shared
Singh, Nirmal Kumar
1 / 1 shared
Khan, Nida
1 / 1 shared
Kumar, Pramendra
1 / 1 shared
Kumar, Sushma
1 / 1 shared
Rajamanickam, Raja
1 / 1 shared
Kumaraswamy, Guruswamy
1 / 3 shared
Sen Gupta, Sayam
1 / 1 shared
Tae, Giyoong
1 / 5 shared
Kim, Jong Chul
1 / 1 shared
Ghosh, Shankar
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2016
2014

Co-Authors (by relevance)

  • Rizwee, Mumtaz
  • Kumar, Rahul
  • Mandal, Swaroop Kumar
  • Tayari, Faouzia
  • Graça, M. P. F.
  • Teixeira, S. Soreto
  • Thakur, Priyanka
  • Nassar, Kais Iben
  • Essid, Manel
  • Benamara, Majdi
  • Lal, Madan
  • Al-Haik, Marwan
  • Dusabimana, Marie Claire
  • Namilae, Sirish
  • Gupta, Avi
  • Goyal, Rahul
  • Pandey, Ashwin
  • Shukla, Monu Kumar
  • Chellappan, Dinesh K.
  • Singh, Sachin Kumar
  • Dua, Kamal
  • Tonk, Rajiv K.
  • Jayaprakash, Gururaj K.
  • Sharma, Abhishek Kumar
  • Bhattacharyya, Sanjib
  • Ahmed, Faheem
  • Lokhande, P. E.
  • Chakrabarti, Sandip
  • Sharma, Ajit
  • Toncu, Dana Cristina
  • Singh, Jashanpreet
  • Tiwari, Ashutosh
  • Kulkarni, Sahana
  • Pathan, H. M.
  • Sindhu, Monika
  • Kumar, Anupam
  • Kumar Mishra, Yogendra
  • Syväjärvi, Mikael
  • Suwas, Satyam
  • Jain, Jayant
  • Yeh, An Chou
  • Chang, Yao Jen
  • Meena, Durgesh K.
  • Jaishri, B.
  • Neelakantan, Suresh
  • Gosvami, Nitya Nand
  • Goel, Saurav
  • Bajpai, Vivek
  • Bishwakarma, Harish
  • Kumar, Mohan
  • Singh, Nirmal Kumar
  • Khan, Nida
  • Kumar, Pramendra
  • Kumar, Sushma
  • Rajamanickam, Raja
  • Kumaraswamy, Guruswamy
  • Sen Gupta, Sayam
  • Tae, Giyoong
  • Kim, Jong Chul
  • Ghosh, Shankar
OrganizationsLocationPeople

article

ProTheRaMon - a GATE simulation framework for proton therapy range monitoring using PET imaging

  • Wiślicki, Wojciech
  • Dulski, Kamil
  • Raczyński, Lech
  • Shivani, Shivani
  • Klimaszewski, Konrad
  • Olko, Pawel
  • Korcyl, Grzegorz
  • Weber, Damien Charles
  • Parzych, Szymon
  • Niedźwiecki, Szymon
  • Kozik, Tomasz
  • Baran, Jakub
  • Brzezinski, Karol W.
  • Chug, Neha
  • Krzemień, Wojciech
  • Kacprzak, Krzysztof
  • Mcnamara, Keegan
  • Kopec, Renata
  • Gajos, Aleksander
  • Kumar, Deepak
  • Sharma, Sushil
  • Tayefi Ardebili, Keyvan
  • Panek, Dominik
  • Stępień, Ewa
  • Río, Elena Pérez Del
  • Konieczka, Paweł
  • Tayefi, Faranak
  • Kapłon, Łukasz
  • Czerwiński, Eryk
  • Coussat, Aurelien
  • Borys, Damian
  • Dadgar, Meysam
  • Skóra, Tomasz
  • Gajewski, Jan
  • Winterhalter, Carla
  • Lomax, Antony John
  • Shopa, Roman Y.
  • Skurzok, Magdalena
  • Moskal, Pawel
Abstract

<jats:title>Abstract</jats:title><jats:p>Objective: This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapytreatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated atthe Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland.Approach: The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user’s needs and specific settings of a given proton therapy facility and PET scanner design.Main results: ProTheRaMon is presented using example data from a patienttreated at CCB and the J-PET scanner to demonstrate the application of theframework for proton therapy range monitoring. The output of each simulation anddata processing stage is described and visualized.Significance: We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitablefor multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.</jats:p>

Topics
  • impedance spectroscopy
  • cluster
  • simulation
  • tomography