Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dzhigaev, Dmitry

  • Google
  • 10
  • 57
  • 139

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Spatially resolved structural and chemical properties of the white layer in machined Inconel 718 super alloy1citations
  • 2024Structural and chemical properties of anion exchanged CsPb(Br<sub>(1−x)</sub>Cl<sub> x </sub>)<sub>3</sub> heterostructured perovskite nanowires imaged by nanofocused x-rays2citations
  • 2022In situ imaging of temperature-dependent fast and reversible nanoscale domain switching in a single-crystal perovskite5citations
  • 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopy11citations
  • 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopy11citations
  • 2020In Situ Imaging of Ferroelastic Domain Dynamics in CsPbBr3Perovskite Nanowires by Nanofocused Scanning X-ray Diffraction31citations
  • 2020In situ imaging of ferroelastic domain dynamics in CsPbBr3perovskite nanowires by nanofocused scanning X-ray diffraction31citations
  • 2019Coherent X-ray Imaging of CO-Adsorption-Induced Structural Changes in Pt Nanoparticles: Implications for Catalysis29citations
  • 2015Nanofocused x-ray beams applied for mapping strain in core-shell nanowires9citations
  • 2015Nanofocused x-ray beams applied for mapping strain in core-shell nanowires9citations

Places of action

Chart of shared publication
Björling, A.
1 / 3 shared
Zhe, R.
1 / 2 shared
Wallentin, J.
1 / 4 shared
Lazar, Isac
1 / 7 shared
Rysov, R.
1 / 3 shared
Bushlya, V.
1 / 13 shared
Dierks, H.
1 / 2 shared
Sprung, M.
1 / 9 shared
Marçal, L. A. B.
1 / 2 shared
Msaoubi, R.
1 / 18 shared
Lenrick, Filip
1 / 37 shared
Mikkelsen, A.
1 / 12 shared
Hammarberg, Susanna
5 / 6 shared
Björling, Alexander
5 / 11 shared
Wallentin, Jesper
6 / 22 shared
Mikkelsen, Anders
8 / 44 shared
Lamers, Nils
1 / 4 shared
Zhang, Zhaojun
4 / 11 shared
Chen, Huaiyu
1 / 5 shared
Gonzalez, Miguel Angel Gomez
1 / 1 shared
Parker, Julia
1 / 1 shared
Zatterin, Edoardo
1 / 7 shared
Schülli, Tobias U.
1 / 6 shared
Marçal, Lucas A. B.
5 / 6 shared
Sanders, Ella
3 / 4 shared
Bellec, Ewen
1 / 2 shared
Rothman, Amnon
5 / 11 shared
Oksenberg, Eitan
4 / 15 shared
Timm, Rainer
2 / 28 shared
Benter, Sandra
2 / 7 shared
Irish, Austin
2 / 6 shared
Sala, Simone
2 / 2 shared
Unger, Eva
4 / 26 shared
Joselevich, Ernesto
2 / 8 shared
Runge, Henning
1 / 1 shared
Richard, Marie-Ingrid
1 / 15 shared
Gelisio, Luca
1 / 1 shared
Vonk, Vedran
1 / 14 shared
Stierle, Andreas
1 / 28 shared
Zhou, Tao
1 / 9 shared
Lazarev, Sergey
1 / 4 shared
Kim, Young Yong
1 / 3 shared
Seitz, Christoph
1 / 1 shared
Keller, Thomas F.
1 / 24 shared
Kulkarni, Satishkumar
1 / 7 shared
Abuin, Manuel
1 / 2 shared
Vartanyants, Ivan A.
2 / 6 shared
Maier, Simon
1 / 1 shared
Shabalin, Anatoly
2 / 3 shared
Bi, Zhaoxia
2 / 4 shared
Samuelson, Lars
2 / 42 shared
Rose, Max
2 / 2 shared
Falkenberg, Gerald
2 / 8 shared
Vartaniants, Ivan
1 / 4 shared
Feidenhansl, Robert
2 / 8 shared
Reinhardt, Juliane
2 / 4 shared
Stankevic, Tomas
2 / 6 shared
Chart of publication period
2024
2022
2021
2020
2019
2015

Co-Authors (by relevance)

  • Björling, A.
  • Zhe, R.
  • Wallentin, J.
  • Lazar, Isac
  • Rysov, R.
  • Bushlya, V.
  • Dierks, H.
  • Sprung, M.
  • Marçal, L. A. B.
  • Msaoubi, R.
  • Lenrick, Filip
  • Mikkelsen, A.
  • Hammarberg, Susanna
  • Björling, Alexander
  • Wallentin, Jesper
  • Mikkelsen, Anders
  • Lamers, Nils
  • Zhang, Zhaojun
  • Chen, Huaiyu
  • Gonzalez, Miguel Angel Gomez
  • Parker, Julia
  • Zatterin, Edoardo
  • Schülli, Tobias U.
  • Marçal, Lucas A. B.
  • Sanders, Ella
  • Bellec, Ewen
  • Rothman, Amnon
  • Oksenberg, Eitan
  • Timm, Rainer
  • Benter, Sandra
  • Irish, Austin
  • Sala, Simone
  • Unger, Eva
  • Joselevich, Ernesto
  • Runge, Henning
  • Richard, Marie-Ingrid
  • Gelisio, Luca
  • Vonk, Vedran
  • Stierle, Andreas
  • Zhou, Tao
  • Lazarev, Sergey
  • Kim, Young Yong
  • Seitz, Christoph
  • Keller, Thomas F.
  • Kulkarni, Satishkumar
  • Abuin, Manuel
  • Vartanyants, Ivan A.
  • Maier, Simon
  • Shabalin, Anatoly
  • Bi, Zhaoxia
  • Samuelson, Lars
  • Rose, Max
  • Falkenberg, Gerald
  • Vartaniants, Ivan
  • Feidenhansl, Robert
  • Reinhardt, Juliane
  • Stankevic, Tomas
OrganizationsLocationPeople

article

Structural and chemical properties of anion exchanged CsPb(Br<sub>(1−x)</sub>Cl<sub> x </sub>)<sub>3</sub> heterostructured perovskite nanowires imaged by nanofocused x-rays

  • Hammarberg, Susanna
  • Björling, Alexander
  • Wallentin, Jesper
  • Mikkelsen, Anders
  • Dzhigaev, Dmitry
  • Lamers, Nils
  • Zhang, Zhaojun
  • Chen, Huaiyu
  • Gonzalez, Miguel Angel Gomez
  • Parker, Julia
Abstract

<jats:title>Abstract</jats:title><jats:p>Over the last years metal halide perovskites have demonstrated remarkable potential for integration in light emitting devices. Heterostructures allow for tunable bandgap depending on the local anion composition, crucial for optoelectronic devices, but local structural effects of anion exchange in single crystals is not fully understood. Here, we investigate how the anion exchange of CsPbBr<jats:sub>3</jats:sub> nanowires fully and locally exposed to HCl vapor affects the local crystal structure, using nanofocused x-rays. We study the nanoscale composition and crystal structure as function of HCl exposure time and demonstrate the correlation of anion exchange with changes in the lattice parameter. The local composition was measured by x-ray fluorescence and x-ray diffraction, with general agreement of both methods but with much less variation using latter. The heterostructured nanowires exhibit unintentional gradients in composition, both axially and radially. Ferroelastic domains are observed for all HCl exposure times, and the magnitude of the lattice tilt at the domain walls scales with the Cl concentration.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • single crystal
  • x-ray diffraction
  • laser emission spectroscopy