Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Adriaens, Mieke

  • Google
  • 5
  • 10
  • 4

Ghent University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Atomic layer deposition for tuning the surface chemical composition of nickel iron phosphates for oxygen evolution reaction in alkaline electrolyzers4citations
  • 2013Influence of the cerium concentration on the corrosion performance of Ce-doped silica hybrid coatings on hot dip galvanized steel substratescitations
  • 2013Evaluation of the corrosion inhibition performance of silane coatings filled with cerium salt-activated nanoparticles on hot-dip galvanized steel substratescitations
  • 2012Electrochemical assessment of the self-healing properties of cerium doped sol-gel coatings on 304L stainless steel substratescitations
  • 2012Microelectrochemical investigation of the effect of cathodic polarisation on the corrosion resistance of 304L stainless steel in a 1 M NaCl solutioncitations

Places of action

Chart of shared publication
Minjauw, Matthias
1 / 11 shared
Detavernier, Christophe
1 / 72 shared
Blomme, Ruben
1 / 2 shared
Vereecken, Philippe
1 / 21 shared
Dendooven, Jolien
1 / 34 shared
Henderick, Lowie
1 / 5 shared
Ramesh, Rahul
1 / 1 shared
Zandi Zand, Roohangiz
3 / 3 shared
Verbeken, Kim
3 / 154 shared
Arjmand Gholenji, Farzin
1 / 1 shared
Chart of publication period
2024
2013
2012

Co-Authors (by relevance)

  • Minjauw, Matthias
  • Detavernier, Christophe
  • Blomme, Ruben
  • Vereecken, Philippe
  • Dendooven, Jolien
  • Henderick, Lowie
  • Ramesh, Rahul
  • Zandi Zand, Roohangiz
  • Verbeken, Kim
  • Arjmand Gholenji, Farzin
OrganizationsLocationPeople

article

Atomic layer deposition for tuning the surface chemical composition of nickel iron phosphates for oxygen evolution reaction in alkaline electrolyzers

  • Minjauw, Matthias
  • Detavernier, Christophe
  • Blomme, Ruben
  • Vereecken, Philippe
  • Dendooven, Jolien
  • Henderick, Lowie
  • Adriaens, Mieke
  • Ramesh, Rahul
Abstract

Transition metal phosphates are promising catalysts for the oxygen evolution reaction (OER) in alkaline medium. Herein, Fe-doped Ni phosphates are deposited using plasma-enhanced atomic layer deposition (PE-ALD) at 300 degrees C. A sequence of f Fe phosphate PE-ALD cycles and n Ni phosphate PE-ALD cycles is repeated x times. The Fe to Ni ratio can be controlled by the cycle ratio (f/n), while the film thickness can be controlled by the number of cycles (x times (n+f )). 30 nm films with an Fe/Ni ratio of similar to 10% and similar to 37%, respectively, are evaluated in 1.0 M KOH solution. Remarkably, a significant difference in OER activity is found when the order of the Ni and Fe phosphate PE-ALD cycles in the deposition sequence is reversed. A 20%-45% larger current density is obtained for catalysts grown with an Fe phosphate PE-ALD cycle at the end compared to the Ni phosphate-terminated flavour. We attribute this to a higher concentration of Fe centers on the surface, as a consequence of the specific PE-ALD approach. Secondly, increasing the thickness of the catalyst films up to 160 nm results in an increase of the OER current density and active surface area, suggesting that the as-deposited smooth and continuous films are converted into electrolyte-permeable structures during catalyst activation and operation. This work demonstrates the ability of PE-ALD to control both the surface and bulk composition of thin film electrocatalysts, offering valuable opportunities to understand their impact on performance.

Topics
  • density
  • impedance spectroscopy
  • surface
  • nickel
  • thin film
  • Oxygen
  • chemical composition
  • iron
  • activation
  • current density
  • atomic layer deposition