People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ristiana, Desinta Dwi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Flower like-novel nanocomposite of Mg(Ti0.99Sn0.01)O3 decorated on reduced graphene oxide (rGO) with high capacitive behavior as supercapacitor electrodes
Abstract
<jats:title>Abstract</jats:title><jats:p>In this study, ceramic materials of Mg(Ti0.99Sn0.01)O3 were synthesized and decorated on reduced graphene oxide, forming a nanocomposite of rGO/Mg(Ti0.99Sn0.01)O3 (rGO/MTS001). The successful synthesis results were confirmed by XRD, UV-Vis analysis, FT-IR, and SEM-EDS. The MTS001 has a flower-like morphology from SEM analysis, and the nanocomposites of rGO/MTS001 showed MTS001 particles decorated on rGO's surface. The electrochemical performance of rGO/MTS001 compared and MTS001 was investigated by determining the specific capacitance obtained in 1 M H2SO4 solution by cyclic voltammetry (CV), followed by galvanostatic charge-discharge (GCD) analysis using a three-electrode setup. The rGO/MTS001 achieved a specific capacitance of 361.97 F g‒1, compared to MTS001 (194.90 F g‒1). The capacitance retention of rGO/MTS001 nanocomposite also depicted excellent cyclic stability of 95.72% after 5000 cycles at a current density of 0.1 A g‒1. The result showed that the nanocomposite of ceramics with graphene materials has a potential for high-performance supercapacitor electrodes.</jats:p>