People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sadeghi, Hatef
University of Warwick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping modecitations
- 2022Low Thermal Conductivity in Franckeite Heterostructurescitations
- 2022Thermoelectric properties of organic thin films enhanced by π-π stackingcitations
- 2020Radical enhancement of molecular thermoelectric efficiencycitations
- 2019Discriminating Seebeck Sensing of Moleculescitations
- 2019Quantum and Phonon Interference Enhanced Molecular-Scale Thermoelectricitycitations
- 2019Unusual length dependence of the conductance in cumulene molecular wirescitations
- 2019Magic Number Theory of Superconducting Proximity Effects and Wigner Delay Times in Graphene-Like Moleculescitations
- 2018Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictionscitations
- 2018Toward High Thermoelectric Performance of Thiophene and Ethylenedioxythiophene (EDOT) Molecular Wirescitations
- 2018Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctionscitations
- 2017Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and dopingcitations
- 2017High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wirescitations
- 2017Thermoelectricity in vertical graphene-C60-graphene architecturescitations
- 2016Theory of electron and phonon transport in nano and molecular quantum devices
- 2016Cross-plane enhanced thermoelectricity and phonon suppression in graphene/MoS2 van der Waals heterostructurescitations
- 2013Classic and quantum capacitances in bernal bilayer and trilayer graphene field effect transistorcitations
Places of action
Organizations | Location | People |
---|
article
Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping mode
Abstract
<jats:title>Abstract</jats:title><jats:p>Molecular thin films, such as self-assembled monolayers (SAMs), offer the possibility of translating the optimised thermophysical and electrical properties of high-Seebeck-coefficient single molecules to scalable device architectures. However, for many scanning probe-based approaches attempting to characterise such SAMs, there remains a significant challenge in recovering single-molecule equivalent values from large-area films due to the intrinsic uncertainty of the probe-sample contact area coupled with film damage caused by contact forces. Here we report a new reproducible non-destructive method for probing the electrical and thermoelectric properties of small assemblies (10 – 10<jats:sup>3</jats:sup>) of thiol-terminated molecules arranged within a SAM on a gold surface, and demonstrate the successful and reproducible measurements of the equivalent single-molecule electrical conductivity and Seebeck values. We have used a modified thermal-electric force microscopy (TEFM) approach, which integrates the conductive-probe atomic force microscope, a sample positioned on a temperature-controlled heater, and a probe-sample peak-force feedback that interactively limits the normal force across the molecular junctions. The experimental results are interpreted by density functional theory calculations allowing quantification the electrical quantum transport properties of both single molecules and small clusters of molecules. Significantly, this approach effectively eliminates lateral forces between probe and sample, minimising disruption to the SAM while enabling simultaneous mapping of the SAMs nanomechanical properties, as well as electrical and/or thermoelectric response, thereby allowing correlation of the film properties.&#xD;</jats:p>