People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Galiotis, Costas
University of Patras
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Operando characterization and molecular simulations reveal the growth kinetics of graphene on liquid copper during chemical vapor depositioncitations
- 2024Operando Characterization and Molecular Simulations Reveal the Growth Kinetics of Graphene on Liquid Copper During Chemical Vapor Depositioncitations
- 2023Understanding cure and interphase effects in functionalized graphene-epoxy nanocompositescitations
- 2023Understanding cure and interphase effects in functionalized graphene-epoxy nanocompositescitations
- 2023Tribology of Copper Metal Matrix Composites Reinforced with Fluorinated Graphene Oxide Nanosheets: Implications for Solid Lubricants in Mechanical Switchescitations
- 2023Mesoscopic Modeling and Experimental Validation of Thermal and Mechanical Properties of Polypropylene Nanocomposites Reinforced By Graphene-Based Fillerscitations
- 2023Nanomechanics of Ultrathin Carbon Nanomembranescitations
- 2023Novel Graphene-Based Materials as a Tool for Improving Long-Term Storage of Cultural Heritagecitations
- 2023Highly stretchable strain sensors based on Marangoni self-assemblies of graphene and its hybrids with other 2D materialscitations
- 2022Hazard Assessment of Abraded Thermoplastic Composites Reinforced with Reduced Graphene Oxidecitations
- 2021Highly Deformable, Ultrathin Large-Area Poly(methyl methacrylate) Filmscitations
- 2021Highly Deformable, Ultrathin Large-Area Poly(methyl methacrylate) Filmscitations
- 2021Efficient Mechanical Stress Transfer in Multilayer Graphene with a Ladder-like Architecturecitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materialscitations
- 2020Production and processing of graphene and related materials
- 2020Graphene and related materials in hierarchical fiber composites: Production techniques and key industrial benefitscitations
- 2020Mechanical, Electrical, and Thermal Properties of Carbon Nanotube Buckypapers/Epoxy Nanocomposites Produced by Oxidized and Epoxidized Nanotubes
- 2019Graphene and related materials in hierarchical fiber composites: production techniques and key industrial benefitscitations
- 2019Graphene and related materials in hierarchical fiber composites: production techniques and key industrial benefitscitations
- 2016Mechanical Stability of Flexible Graphene-Based Displayscitations
- 2015Deformation of Wrinkled Graphenecitations
- 2011Development of a universal stress sensor for graphene and carbon fibrescitations
- 2002Progress on composites with embedded shape memory alloy wirescitations
Places of action
Organizations | Location | People |
---|
article
Highly stretchable strain sensors based on Marangoni self-assemblies of graphene and its hybrids with other 2D materials
Abstract
<jats:title>Abstract</jats:title><jats:p>Graphene and other two-dimensional materials (2DMs) have been shown to be promising candidates for the development of flexible and highly-sensitive strain sensors. However, the successful implementation of 2DMs in practical applications is slowed down by complex processing and still low sensitivity. Here, we report on a novel development of strain sensors based on Marangoni self-assemblies of graphene and of its hybrids with other 2DMs that can both withstand very large deformation and exhibit highly sensitive piezoresistive behaviour. By exploiting the Marangoni effect, reference films of self-assembled reduced graphene oxide (RGO) are first optimized, and the electromechanical behaviour has been assessed after deposition onto different elastomers demonstrating the potential of producing strain sensors suitable for different fields of application. Hybrid networks have been then prepared by adding hexagonal boron nitride (hBN) and fluorinated graphene (FGr) to the RGO dispersion. The hybrid integration of 2D materials is demonstrated to become a potential solution to increase substantially the sensitivity of the produced resistive strain sensors without compromising the mechanical integrity of the film. In fact, for large quasi-static deformations, a range of gauge factor values up to 2000 were demonstrated, while retaining a stable performance under cyclic deformations.</jats:p>