Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mukherjee, Bratindranath

  • Google
  • 1
  • 3
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Polygonal gold nanocrystal induced efficient phase transition in 2D-MoS<sub>2</sub> for enhancing photo-electrocatalytic hydrogen generation10citations

Places of action

Chart of shared publication
Devi, Assa Aravindh
1 / 3 shared
Velusamy, Jayaramakrishnan
1 / 1 shared
Sharma, Uttam
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Devi, Assa Aravindh
  • Velusamy, Jayaramakrishnan
  • Sharma, Uttam
OrganizationsLocationPeople

article

Polygonal gold nanocrystal induced efficient phase transition in 2D-MoS<sub>2</sub> for enhancing photo-electrocatalytic hydrogen generation

  • Devi, Assa Aravindh
  • Velusamy, Jayaramakrishnan
  • Sharma, Uttam
  • Mukherjee, Bratindranath
Abstract

<jats:title>Abstract</jats:title><jats:p>Plasmonic nanocrystals (NCs) assisted phase transition of two-dimensional molybdenum disulfide (2D-MoS<jats:sub>2</jats:sub>) unlashes numerous opportunities in the fields of energy harvesting via electrocatalysis and photoelectrocatalysis by enhancing electronic conductivity, increasing catalytic active sites, lowering Gibbs free energy for hydrogen adsorption and desorption, etc. Here, we report the synthesis of faceted gold pentagonal bi-pyramidal (Au-PBP) nanocrystals (NC) for efficient plasmon-induced phase transition (from 2 H to 1 T phase) in chemical vapor deposited 2D-MoS<jats:sub>2</jats:sub>. The as-developed Au-PBP NC with the increased number of corners and edges showed an enhanced multi-modal plasmonic effect under light irradiations. The overpotential of hydrogen evolution reaction (HER) was reduced by 61 mV, whereas the Tafel slope decreased by 23.7 mV/dec on photoexcitation of the Au-PBP@MoS<jats:sub>2</jats:sub> hybrid catalyst. The enhanced performance can be attributed to the light-induced 2H to 1 T phase transition of 2D-MoS<jats:sub>2</jats:sub>, increased active sites, reduced Gibbs free energy, efficient charge separation, change in surface potential, and improved electrical conductivity of 2D-MoS<jats:sub>2</jats:sub> film. From density functional theory (DFT) calculations, we obtain a significant change in the electronic properties of 2D-MoS<jats:sub>2</jats:sub> (i.e. work function, surface chemical potential, and the density of states), which was primarily due to the plasmonic interactions and exchange-interactions between the Au-PBP nanocrystals and monolayer 2D-MoS<jats:sub>2</jats:sub>, thereby enhancing the phase transition and improving the surface properties. This work would lay out finding assorted routes to explore more complex nanocrystals-based multipolar plasmonic NC to escalate the HER activity of 2D-MoS<jats:sub>2</jats:sub> and other 2D transition metal dichalcogenides.</jats:p>

Topics
  • density
  • surface
  • molybdenum
  • phase
  • theory
  • gold
  • Hydrogen
  • phase transition
  • density functional theory
  • two-dimensional
  • electrical conductivity