Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kołodziej, Grzegorz

  • Google
  • 1
  • 8
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022The atomic layer deposition (ALD) synthesis of copper-tin sulfide thin films using low-cost precursors6citations

Places of action

Chart of shared publication
Szawcow, Oliwia
1 / 2 shared
Socha, Robert
1 / 4 shared
Witkowski, Marcin
1 / 2 shared
Ostapko, Jakub
1 / 2 shared
Starowicz, Zbigniew
1 / 5 shared
Haras, Maciej
1 / 4 shared
Zięba, Adam
1 / 1 shared
Adamczyk-Cieślak, Bogusława
1 / 77 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Szawcow, Oliwia
  • Socha, Robert
  • Witkowski, Marcin
  • Ostapko, Jakub
  • Starowicz, Zbigniew
  • Haras, Maciej
  • Zięba, Adam
  • Adamczyk-Cieślak, Bogusława
OrganizationsLocationPeople

article

The atomic layer deposition (ALD) synthesis of copper-tin sulfide thin films using low-cost precursors

  • Szawcow, Oliwia
  • Socha, Robert
  • Witkowski, Marcin
  • Ostapko, Jakub
  • Starowicz, Zbigniew
  • Haras, Maciej
  • Zięba, Adam
  • Adamczyk-Cieślak, Bogusława
  • Kołodziej, Grzegorz
Abstract

<jats:title>Abstract</jats:title><jats:p>In this work we demonstrated the process of co-deposition of copper-tin sulfide species by the atomic layer deposition (ALD) technique using all-low-cost precursors. For the deposition of tin species, the tin(IV) chloride SnCl<jats:sub>4</jats:sub> was used successfully for the first time in the ALD process. Moreover, we showed that the successful deposition of the tin sulfide component was conditioned by the pre-deposition of CuS<jats:italic><jats:sub>x</jats:sub></jats:italic> layer. The co-deposition of copper and tin sulfides components at 150 °C resulted in the in-process formation of the film containing Cu<jats:sub>2</jats:sub>SnS<jats:sub>3</jats:sub>, Cu<jats:sub>3</jats:sub>SnS<jats:sub>4</jats:sub> and <jats:italic>π</jats:italic>-SnS phases. The process involving only tin precursor and H<jats:sub>2</jats:sub>S did not produce the SnS<jats:italic><jats:sub>x</jats:sub></jats:italic> species. The spectroscopic characteristic of the obtained materials were confronted with the literature survey, allowing us to discuss the methodology of the determination of ternary and quaternary sulfides purity by Raman spectroscopy. Moreover, the material characterisation with respect to the morphology (SEM), phase composition (XRD), surface chemical states (XPS), optical properties (UV–vis-NIR spectroscopy) and electric (Hall measurements) properties were provided. Finally, the obtained material was used for the formation of the p–n junction revealing the rectifying <jats:italic>I</jats:italic>–<jats:italic>V</jats:italic> characteristics.</jats:p>

Topics
  • surface
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • x-ray photoelectron spectroscopy
  • copper
  • tin
  • Raman spectroscopy
  • atomic layer deposition