Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Younes, Hammad

  • Google
  • 3
  • 7
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Optimization of Selective Laser Sintering Three-Dimensional Printing of Thermoplastic Polyurethane Elastomer: A Statistical Approach3citations
  • 2021Enhanced electrical conductivity of anticorrosive coatings by functionalized carbon nanotubes: effect of hydrogen bonding12citations
  • 2017Effect of Saline Solution on the Electrical Response of Single Wall Carbon Nanotubes-Epoxy Nanocomposites3citations

Places of action

Chart of shared publication
Bustami, Bayazid
1 / 1 shared
Roy, Rakesh
1 / 1 shared
Karim, Mehrab
1 / 2 shared
Alam, S. M. Nur
1 / 2 shared
Ghaferi, Amal Al
1 / 3 shared
Saadat, Irfan
1 / 1 shared
Rahman, Md. Mahfuzur
1 / 1 shared
Chart of publication period
2023
2021
2017

Co-Authors (by relevance)

  • Bustami, Bayazid
  • Roy, Rakesh
  • Karim, Mehrab
  • Alam, S. M. Nur
  • Ghaferi, Amal Al
  • Saadat, Irfan
  • Rahman, Md. Mahfuzur
OrganizationsLocationPeople

article

Enhanced electrical conductivity of anticorrosive coatings by functionalized carbon nanotubes: effect of hydrogen bonding

  • Younes, Hammad
Abstract

<jats:title>Abstract</jats:title><jats:p>Carbon nanotubes (CNTs) and nanofibers (CNFs) are well-known nano additives that produce coating materials with high electrical and thermal conductivity and corrosion resistance. In this paper, coating materials incorporating hydrogen bonding offered significantly lower electrical resistance. The hydrogen bonding formed between functionalized carbon nanotubes and ethanol helped create a well-dispersed carbon nanotube network as the electron pathways. Electrical resistivity as low as 6.8 Ω⋅cm has been achieved by adding 4.5 wt.% functionalized multiwalled carbon nanotubes (MWNT-OH) to 75%Polyurethane/25%Ethanol. Moreover, the thermal conductivity of Polyurethane was improved by 332% with 10 wt.% addition of CNF. Electrochemical methods were used to evaluate the anti-corrosion properties of the fabricated coating materials. Polyurethane with the addition of 3 wt.% of MWNT-OH showed an excellent corrosion rate of 5.105×10-3 mm/year, with a protection efficiency of 99.5% against corrosive environments. The adhesion properties of the coating materials were measured following ASTM standard test methods. Polyurethane with 3 wt.% of MWNT-OH belonged to class 5 (ASTM D3359), indicating the outstanding adhesion of the coating to the substrate. These nano coatings with enhanced electrical, thermal, and anti-corrosion properties consist of a choice of traditional coating materials, such as Polyurethane, yielding coating durability with the ability to tailor the electrical and thermal properties to fit the desired application.</jats:p>

Topics
  • Carbon
  • corrosion
  • resistivity
  • nanotube
  • Hydrogen
  • durability
  • thermal conductivity
  • electrical conductivity