People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mahmoud, Mohamed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023The Evolution of Fracture Surface Parameters in Heterogeneous Carbonate Reservoirs Employing Chelating Agents as Acid Fracturing Fluidscitations
- 2022Rheological Optimization of CO2 Foamed Chelating Stimulation Fluids at High-Pressure, High-Temperature, and Salinitycitations
- 2022Synthesis of transparent bio-electrodes for biophysiological measurements based on modified graphene oxidecitations
- 2022A 3-D Multi-physics computational model for thin sheet metal forming processes : Application to deep drawing and magnetic pulse forming processes ; Un modèle 3D de calcul Multi-physique pour les procédés de formage de tôles minces : Application aux procédés d'emboutissage profond et de formage par impulsion magnétique
- 2022An efficient multiphysics solid shell based finite element approach for modeling thin sheet metal forming processescitations
Places of action
Organizations | Location | People |
---|
article
Synthesis of transparent bio-electrodes for biophysiological measurements based on modified graphene oxide
Abstract
<jats:title>Abstract</jats:title><jats:p>The main objective of this work was to fabricate smart nanocomposite transparent conductive biophysiological electrodes based on modified graphene oxide (GO). The GO is abundant, flexible conductors that can be formulated as a transparent sheet and thereby alleviate the drawbacks of using indium tin oxide in transparent electrodes, like its scarcity, brittleness, and cost. GO was synthesized by a modified version of Hummers’ method under highly acidic conditions with sulfuric acid and showed good distribution at a high temperature of 90 °C. Polyvinyl alcohol (PVA) was used as a polymer host in the composite. Glycerol (Gl) was used to increase the flexibility and conductivity through an esterification reaction. Characteristic techniques were used to detect the morphology and structure of GO fillers and their polymer composites, such as transmission electron microscopy, x-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The GO/Gl/PVA transparent nanocomposite was tested for the synthesis of electrocardiogram (ECG) and electrodermal (EDA) electrodes. The Biopac device was used to evaluate the behavior of the GO/Gl/PVA plastic transparent electrode in comparison to the GO/Gl/PVA black electrode and a commercial one. The results indicated improved efficiency of the GO/Gl/PVA ECG transparent electrode. The GO/Gl/PVA EDA electrode produced signals with higher conductivity and lower noise than the commercial electrode.</jats:p>