Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bera, K.

  • Google
  • 2
  • 11
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Superconductivity in V-doped Mg$_{1-x}$Ti$_2$O$_4$citations
  • 2021Role of defects and grain boundaries in the thermal response of wafer-scale hBN films7citations

Places of action

Chart of shared publication
Pal, Riju
1 / 2 shared
Goswami, D. K.
1 / 1 shared
Choudhury, D.
1 / 2 shared
Pal, A. N.
1 / 1 shared
Pal, B.
1 / 3 shared
Rahaman, A.
1 / 2 shared
Mallik, S.
1 / 4 shared
Maji, P.
1 / 2 shared
Paramanik, T.
1 / 1 shared
Chugh, D.
1 / 2 shared
Roy, Anushree
1 / 2 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Pal, Riju
  • Goswami, D. K.
  • Choudhury, D.
  • Pal, A. N.
  • Pal, B.
  • Rahaman, A.
  • Mallik, S.
  • Maji, P.
  • Paramanik, T.
  • Chugh, D.
  • Roy, Anushree
OrganizationsLocationPeople

article

Role of defects and grain boundaries in the thermal response of wafer-scale hBN films

  • Chugh, D.
  • Bera, K.
  • Roy, Anushree
Abstract

<p>With more widespread applications of nanotechnology, heat dissipation in nanoscale devices is becoming a critical issue. We study the thermal response of wafer-scale hexagonal boron nitride (hBN) layers, which find potential applications as ideal substrates in two dimensional devices. Sapphire-supported thin hBN films, 2′′ in size and of different thicknesses, were grown using metalorganic vapour phase epitaxy. These large-scale films exhibit wrinkles defects and grain boundaries over their entire area. The shift of phonon mode with temperature is analysed by considering the cumulative contribution of anharmonic phonon decay along with lattice thermal expansion, defect, and strain modulation. The study demonstrates that during heat treatment the strain evolution plays a dominating role in governing the characteristics of the wrinkled thinner films. Interestingly we find that both defects and strain determine the spectral line-width of these wafer-scale films. To the end, from Raman line-width, the changes in phonon lifetime in delaminated and as-grown films is estimated. The results suggest the possibility of a reduction in thermal transport in these wafer-scale films compared to their bulk counterpart.</p>

Topics
  • impedance spectroscopy
  • grain
  • phase
  • nitride
  • thermal expansion
  • defect
  • Boron