Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pazdera, Tobias M.

  • Google
  • 1
  • 10
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Nanoscale patterning at the Si/SiO<sub>2</sub>/graphene interface by focused He<sup>+</sup> beam2citations

Places of action

Chart of shared publication
Schwaiger, Ruth
1 / 25 shared
Esch, Friedrich
1 / 2 shared
Hauns, Jakob
1 / 1 shared
Strelnikov, Dmitry
1 / 1 shared
Lebedkin, Sergei
1 / 1 shared
Böttcher, Artur
1 / 2 shared
Gröger, Roland
1 / 2 shared
Kappes, Manfred M.
1 / 4 shared
Exner, Daniela
1 / 1 shared
Lechner, Barbara
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Schwaiger, Ruth
  • Esch, Friedrich
  • Hauns, Jakob
  • Strelnikov, Dmitry
  • Lebedkin, Sergei
  • Böttcher, Artur
  • Gröger, Roland
  • Kappes, Manfred M.
  • Exner, Daniela
  • Lechner, Barbara
OrganizationsLocationPeople

article

Nanoscale patterning at the Si/SiO<sub>2</sub>/graphene interface by focused He<sup>+</sup> beam

  • Schwaiger, Ruth
  • Esch, Friedrich
  • Hauns, Jakob
  • Strelnikov, Dmitry
  • Lebedkin, Sergei
  • Böttcher, Artur
  • Gröger, Roland
  • Pazdera, Tobias M.
  • Kappes, Manfred M.
  • Exner, Daniela
  • Lechner, Barbara
Abstract

<jats:title>Abstract</jats:title><jats:p>We have studied the capability of He<jats:sup>+</jats:sup> focused ion beam (He<jats:sup>+</jats:sup>-FIB) patterning to fabricate defect arrays on the Si/SiO<jats:sub>2</jats:sub>/Graphene interface using a combination of atomic force microscopy (AFM) and Raman imaging to probe damage zones. In general, an amorphized ‘blister’ region of cylindrical symmetry results upon exposing the surface to the stationary focused He<jats:sup>+</jats:sup> beam. The topography of the amorphized region depends strongly on the ion dose, <jats:italic>D<jats:sub>S</jats:sub></jats:italic>, (ranging from 10<jats:sup>3</jats:sup> to 10<jats:sup>7</jats:sup>ions/spot) with craters and holes observed at higher doses. Furthermore, the surface morphology depends on the distance between adjacent irradiated spots, <jats:italic>L<jats:sub>S</jats:sub></jats:italic>. Increasing the dose leads to (enhanced) subsurface amorphization and a local height increase relative to the unexposed regions. At the highest areal ion dose, the average height of a patterned area also increases as ∼1/<jats:italic>L<jats:sub>S</jats:sub></jats:italic>. Correspondingly, in optical micrographs, the <jats:italic>µ</jats:italic>m<jats:sup>2</jats:sup>-sized patterned surface regions change appearance. These phenomena can be explained by implantation of the He<jats:sup>+</jats:sup> ions into the subsurface layers, formation of helium nanobubbles, expansion and modification of the dielectric constant of the patterned material. The corresponding modifications of the terminating graphene monolayer have been monitored by micro Raman imaging. At low ion doses, <jats:italic>D<jats:sub>S</jats:sub></jats:italic>, the graphene becomes modified by carbon atom defects which perturb the 2D lattice (as indicated by increasing D/G Raman mode ratio). Additional x-ray photoionization spectroscopy (XPS) measurements allow us to infer that for moderate ion doses, scattering of He<jats:sup>+</jats:sup> ions by the subsurface results in the oxidation of the graphene network. For largest doses and smallest <jats:italic>L<jats:sub>S</jats:sub></jats:italic> values, the He<jats:sup>+</jats:sup> beam activates extensive Si/SiO<jats:sub>2</jats:sub>/C bond rearrangement and a multicomponent material possibly comprising SiC and silicon oxycarbides, SiOC, is observed. We also infer parameter ranges for He<jats:sup>+</jats:sup>-FIB patterning defect arrays of potential use for pinning transition metal nanoparticles in model studies of heterogeneous catalysis.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • Carbon
  • x-ray photoelectron spectroscopy
  • atomic force microscopy
  • dielectric constant
  • focused ion beam
  • Silicon
  • defect