Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Talmila, Soile

  • Google
  • 2
  • 13
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Gradients of Be-dopant concentration in self-catalyzed GaAs nanowires6citations
  • 2015Te-doping of self-catalyzed GaAs nanowires27citations

Places of action

Chart of shared publication
Gobato, Yara Galvao
1 / 3 shared
Piton, Marcelo Rizzo
1 / 5 shared
Guina, Mircea
2 / 36 shared
Lupo, Donald
1 / 11 shared
Hakkarainen, Teemu Valtteri
2 / 9 shared
Souto, Sergio
1 / 1 shared
Rodrigues, Ariano De Giovanni
1 / 2 shared
Galeti, Helder Vinicius Avanco
1 / 2 shared
Koivusalo, Eero
1 / 5 shared
Salminen, Turkka
1 / 31 shared
Luna, E.
1 / 7 shared
Koskinen, R.
1 / 1 shared
Honkanen, Mari Hetti
1 / 59 shared
Chart of publication period
2019
2015

Co-Authors (by relevance)

  • Gobato, Yara Galvao
  • Piton, Marcelo Rizzo
  • Guina, Mircea
  • Lupo, Donald
  • Hakkarainen, Teemu Valtteri
  • Souto, Sergio
  • Rodrigues, Ariano De Giovanni
  • Galeti, Helder Vinicius Avanco
  • Koivusalo, Eero
  • Salminen, Turkka
  • Luna, E.
  • Koskinen, R.
  • Honkanen, Mari Hetti
OrganizationsLocationPeople

article

Gradients of Be-dopant concentration in self-catalyzed GaAs nanowires

  • Gobato, Yara Galvao
  • Piton, Marcelo Rizzo
  • Talmila, Soile
  • Guina, Mircea
  • Lupo, Donald
  • Hakkarainen, Teemu Valtteri
  • Souto, Sergio
  • Rodrigues, Ariano De Giovanni
  • Galeti, Helder Vinicius Avanco
  • Koivusalo, Eero
Abstract

<p>Effective and controllable doping is instrumental for enabling the use of III-V semiconductor nanowires (NWs) in practical electronics and optoelectronics applications. To this end, dopants are incorporated during self-catalyzed growth via vapor-liquid-solid mechanism through the catalyst droplet or by vapor-solid mechanism of the sidewall growth. The interplay of these mechanisms together with the competition between axial elongation and radial growth of NWs can result in dopant concentration gradients along the NW axis. Here, we report an investigation of Be-doped p-type GaAs NWs grown by the self-catalyzed method on lithography-free Si/SiOx templates. The influence of dopant incorporation on the structural properties of the NWs is analyzed by scanning and transmission electron microscopy. By combining spatially resolved Raman spectroscopy and transport characterization, we are able to estimate the carrier concentration, mobility and resistivity on single-NW level. We show that Be dopants are incorporated predominantly by vapor-solid mechanism for low Be flux, while the relative contribution of vapor-liquid-solid incorporation is increased for higher Be flux, resulting in axial dopant gradients that depend on the nominal doping level.</p>

Topics
  • impedance spectroscopy
  • resistivity
  • mobility
  • transmission electron microscopy
  • Raman spectroscopy
  • lithography
  • III-V semiconductor