Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shahbazi, Kowsar

  • Google
  • 4
  • 8
  • 84

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2019Tuning spin-orbit torques at magnetic domain walls in epitaxial Pt/Co/Pt1-x Au x trilayers17citations
  • 2019Tuning spin–orbit torques at magnetic domain walls in epitaxial Pt/Co/Pt1−x Au x trilayers17citations
  • 2018Magnetic properties and field-driven dynamics of chiral domain walls in epitaxial Pt/Co/Au$_x$Pt$_{1-x}$ trilayers25citations
  • 2018Magnetic properties and field-driven dynamics of chiral domain walls in epitaxial Pt/Co/AuxPt1−x trilayers.25citations

Places of action

Chart of shared publication
Marrows, Christopher H.
4 / 12 shared
Martinez, Eduardo
3 / 5 shared
Moore, Thomas A.
4 / 7 shared
Hrabec, Aleš
4 / 7 shared
Ward, Michael B.
2 / 5 shared
Jeudy, Vincent
2 / 7 shared
Moretti, Simone
2 / 4 shared
Martínez Vecino, Eduardo
1 / 5 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Marrows, Christopher H.
  • Martinez, Eduardo
  • Moore, Thomas A.
  • Hrabec, Aleš
  • Ward, Michael B.
  • Jeudy, Vincent
  • Moretti, Simone
  • Martínez Vecino, Eduardo
OrganizationsLocationPeople

article

Tuning spin-orbit torques at magnetic domain walls in epitaxial Pt/Co/Pt1-x Au x trilayers

  • Marrows, Christopher H.
  • Martinez, Eduardo
  • Moore, Thomas A.
  • Hrabec, Aleš
  • Shahbazi, Kowsar
Abstract

<p>Magnetic domain walls (DWs) in perpendicularly magnetised thin films are attractive for racetrack memories, but technological progress still requires further reduction of the operationing currents. To efficiently drive these objects by the means of electric current, one has to optimize the damping-like torque which is caused by the spin Hall effect (SHE). This not only requires a high net spin Hall angle but also the presence of a Dzyaloshinskii-Moriya interaction (DMI) to produce magnetic textures sensitive to this type of the torque. In this work, we explore the coexistence and importance of these two phenomena in epitaxial Pt/Co/Pt1-x Au x films in which we control the degree of inversion symmetry-breaking between the two interfaces by varying x. Gold is used as a material with negligible induced magnetic moment and SHE and the interface between Co/Au as a source of a small DMI. We find no current-induced DW motion in the symmetric Pt/Co/Pt (x = 0) trilayer. By fitting a one-dimensional model to the DW velocity as a function of drive current density and in-plane applied field in samples with non-zero values of x, we find that both net DMI strength and spin Hall angle rise monotonically as Au is introduced. They reach values of 0.75 ± 0.05 mJ m-2 and 0.10 ± 0.01, respectively, for Pt/Co/Au (x = 1).</p>

Topics
  • density
  • impedance spectroscopy
  • thin film
  • gold
  • strength
  • texture
  • current density
  • one-dimensional
  • magnetic domain wall