Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dehsari, H. S.

  • Google
  • 1
  • 8
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Elastic wave propagation in smooth and wrinkled stratified polymer films7citations

Places of action

Chart of shared publication
Gueddida, A.
1 / 1 shared
Butt, H. J.
1 / 2 shared
Hesami, M.
1 / 1 shared
Djafari-Rouhani, B.
1 / 4 shared
Fytas, G.
1 / 5 shared
Rudykh, S.
1 / 2 shared
Gomopoulos, N.
1 / 2 shared
Asadi, Kamal
1 / 18 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Gueddida, A.
  • Butt, H. J.
  • Hesami, M.
  • Djafari-Rouhani, B.
  • Fytas, G.
  • Rudykh, S.
  • Gomopoulos, N.
  • Asadi, Kamal
OrganizationsLocationPeople

article

Elastic wave propagation in smooth and wrinkled stratified polymer films

  • Gueddida, A.
  • Butt, H. J.
  • Hesami, M.
  • Djafari-Rouhani, B.
  • Fytas, G.
  • Rudykh, S.
  • Dehsari, H. S.
  • Gomopoulos, N.
  • Asadi, Kamal
Abstract

<p>Periodic materials with sub-micrometer characteristic length scale can provide means for control of propagation of hypersonic phonons. In addition to propagation stopbands for the acoustic phonons, distinct dispersive modes can reveal specific thermal and mechanical behavior under confinement. Here, we employ both experimental and theoretical methods to characterize the phonon dispersion relation (frequency versus wave vector). We employed Brillouin light scattering (BLS) spectroscopy to record the phonon dispersion in stratified multilayer polymer films. These films consist of 4-128 alternate polycarbonate (PC) and poly (methyl methacrylate) (PMMA) layers along and normal to the periodicity direction. The distinct direction-dependent phonon propagation was theoretically accounted for, by considering the polarization, frequency and intensity of the observed modes in the BLS spectra. Layer-guiding was also supported by the glass transition temperatures of the PC and PMMA layers. The number of phonon dispersion branches increased with the number of layers but only a few branches were observable by BLS. Introduction of an additional in-plane periodicity, through a permanent wrinkling of the smooth PC/PMMA films, had only subtle consequences in the phonon propagation. Using the frequencies of the periodicity induced modes and momentum conservation equation we were able to precisely back calculate the wrinkle periodicity. However, a wrinkling-induced acoustic stopband utilizing flexible layered materials is still a challenge.</p>

Topics
  • impedance spectroscopy
  • dispersion
  • polymer
  • glass
  • glass
  • layered
  • glass transition temperature
  • light scattering