Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kortshagen, Uwe R.

  • Google
  • 9
  • 29
  • 233

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2022Plasma-Synthesized Nitrogen-Doped Titanium Dioxide Nanoparticles With Tunable Visible Light Absorption and Photocatalytic Activity4citations
  • 2020Plasmonic nanocomposites of zinc oxide and titanium nitride4citations
  • 2020Nanocrystal-based inorganic nanocomposites3citations
  • 2019Silicon Quantum Dot-Poly(methyl methacrylate) Nanocomposites with Reduced Light Scattering for Luminescent Solar Concentrators66citations
  • 2018Variable range hopping conduction in ZnO nanocrystal thin films11citations
  • 2017ZnO Nanocrystal Networks Near the Insulator-Metal Transition35citations
  • 2015Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement63citations
  • 2015Nonthermal plasma synthesis of metal sulfide nanocrystals from metalorganic vapor and elemental sulfur23citations
  • 2013Effects of water adsorption and surface oxidation on the electrical conductivity of silicon nanocrystal films24citations

Places of action

Chart of shared publication
Beaudette, Chad A.
3 / 3 shared
Eslamisaray, Mohammad Ali
1 / 1 shared
Concannon, Nolan M.
1 / 1 shared
Nguyen, Phong H.
1 / 2 shared
Aydil, Eray S.
1 / 9 shared
Greenberg, Benjamin L.
4 / 5 shared
Mkhoyan, K. Andre
2 / 17 shared
Held, Jacob T.
2 / 4 shared
Wang, Xiaojia
1 / 5 shared
Hollinger, Jon
1 / 1 shared
Peterson, Colin
1 / 6 shared
Hill, Samantha K. E.
1 / 2 shared
Ferry, Vivian E.
1 / 6 shared
Connell, Ryan
1 / 2 shared
Campbell, S. A.
1 / 3 shared
Benton, Brian T.
1 / 1 shared
Shklovskii, B. I.
1 / 3 shared
Robinson, Zachary L.
1 / 1 shared
Francis, Lorraine F.
1 / 8 shared
Reich, K. V.
1 / 1 shared
Gorynski, Claudia
1 / 1 shared
Voigt, Bryan N.
1 / 1 shared
Kramer, Nicolaas J.
1 / 1 shared
Ganguly, Shreyashi
1 / 1 shared
Thimsen, Elijah
1 / 1 shared
Rowe, David J.
1 / 1 shared
Anthony, Rebecca J.
1 / 1 shared
Merritt, Brian A.
1 / 1 shared
Rastgar, Neema
1 / 2 shared
Chart of publication period
2022
2020
2019
2018
2017
2015
2013

Co-Authors (by relevance)

  • Beaudette, Chad A.
  • Eslamisaray, Mohammad Ali
  • Concannon, Nolan M.
  • Nguyen, Phong H.
  • Aydil, Eray S.
  • Greenberg, Benjamin L.
  • Mkhoyan, K. Andre
  • Held, Jacob T.
  • Wang, Xiaojia
  • Hollinger, Jon
  • Peterson, Colin
  • Hill, Samantha K. E.
  • Ferry, Vivian E.
  • Connell, Ryan
  • Campbell, S. A.
  • Benton, Brian T.
  • Shklovskii, B. I.
  • Robinson, Zachary L.
  • Francis, Lorraine F.
  • Reich, K. V.
  • Gorynski, Claudia
  • Voigt, Bryan N.
  • Kramer, Nicolaas J.
  • Ganguly, Shreyashi
  • Thimsen, Elijah
  • Rowe, David J.
  • Anthony, Rebecca J.
  • Merritt, Brian A.
  • Rastgar, Neema
OrganizationsLocationPeople

article

Variable range hopping conduction in ZnO nanocrystal thin films

  • Kortshagen, Uwe R.
  • Campbell, S. A.
  • Greenberg, Benjamin L.
  • Benton, Brian T.
Abstract

<p>Zinc oxide (ZnO) nanocrystal films are of interest for new applications in thin film transistors and as transparent conductive oxides. Previous work has concentrated on achieving highly conductive, metallic films. This work focusses on the less explored insulating to semi-insulating regime, which enables obtaining deeper insights into the roles of surface states and defect states trapped at the nanocrystal interfaces. We examine the effects of various post-deposition treatments including controlled dosing with ultraviolet light, filling the voids between nanocrystals with a matrix material deposited by atomic layer deposition, and thermal annealing of the nanocrystal films. Both Mott and Efros-Shklovskii variable range hopping are observed depending on the carrier concentration in the nanocrystals. Using the above post-treatments to transition the films between the two conduction mechanisms enables determining the Fermi level density of states and the electron localization length. To interpret our results, we propose a model based on the assumption of nanocrystals consisting of quasi-neutral cores surrounded by shells depleted by surface OH trap states. The model suggests that the primary source of the increased conductivity in ZnO nanocrystal films based on post-treatments is an increase in the ability to tunnel between nanocrystals due to a reduction of the distance between the quasi-neutral nanocrystal cores.</p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • thin film
  • zinc
  • laser emission spectroscopy
  • annealing
  • void
  • atomic layer deposition