People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jamet, Matthieu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Light-driven Electrodynamics and Demagnetization in Fe$_n$GeTe$_2$ (n = 3, 5) Thin Films
- 2024Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe<sub>2</sub> Probed by THz Spintronic Emissioncitations
- 2024Two-dimensional to bulk crossover of the WSe2 electronic band structure
- 2022Phonon dynamics and thermal conductivity of PtSe2 thin films: Impact of crystallinity and film thickness on heat dissipation
- 2022Evidence for highly p-type doping and type II band alignment in large scale monolayer WSe2/Se-terminated GaAs heterojunction grown by molecular beam epitaxycitations
- 2021Control of spin-charge conversion in van der Waals heterostructurescitations
- 2021Control of spin–charge conversion in van der Waals heterostructurescitations
- 2021Spin-orbit torques in topological insulator / two-dimensional ferromagnet heterostructures
- 2019Van der Waals solid phase epitaxy to grow large-area manganese-doped MoSe2 few-layers on SiO2/Sicitations
- 2019Van der Waals solid phase epitaxy to grow large-area manganese-doped MoSe$_2$ few-layers on SiO$_2$/Sicitations
- 2018Impact of a van der Waals interface on intrinsic and extrinsic defects in an MoSe 2 monolayercitations
- 2018Impact of a van der Waals interface on intrinsic and extrinsic defects in an MoSe 2 monolayercitations
- 2018Calculation method of spin accumulations and spin signals in nanostructures using spin resistorscitations
- 2015Spinodal nanodecomposition in semiconductors doped with transition metalscitations
- 2013Transition from spin accumulation into interface states to spin injection in silicon and germanium conduction bandscitations
- 2013Transition from spin accumulation into interface states to spin injection in silicon and germanium conduction bandscitations
- 2007Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columnscitations
- 2006High-Curie-temperature ferromagnetism in self-organized GeMn nanocolumns
Places of action
Organizations | Location | People |
---|
article
Impact of a van der Waals interface on intrinsic and extrinsic defects in an MoSe 2 monolayer
Abstract
In this work, we study growth and migration of atomic defects in MoSe 2 on graphene using multiple advanced transmission electron microscopy techniques to explore defect behavior in vdW heterostructures. A MoSe 2 /graphene vdW heterostructure is prepared by a direct growth of both monolayers, thereby attaining an ideal vdW interface between the monolayers. We investigate the intrinsic defects (inversion domains and grain boundaries) in synthesized MoSe 2 , their evolution amid growth processing steps, and their influence on the formation and movement of extrinsic defects. Electron diffraction identifies a preferential interlayer orientation of 2° between MoSe 2 and graphene, which is caused by the presence of intrinsic IBD defects. Extrinsic defects (point and line defects) are generated by in situ electron irradiation in the MoSe 2 layer. Our results shed light on how to independently modify the MoSe 2 atomic structure in vdW heterostructures for potential utilization in device processing.