People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kolosov, Oleg Victor
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping modecitations
- 2022Low Thermal Conductivity in Franckeite Heterostructurescitations
- 2022Thermoelectric properties of organic thin films enhanced by π-π stackingcitations
- 2021Thermoelectric voltage modulation via backgate doping in graphene nanoconstrictions studied with STGM
- 2021SCANNING THERMAL MICROSCOPY OF 2D MATERIALS IN HIGH VACUUM ENVIRONMENT
- 2020Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Filmscitations
- 2020Direct mapping of local Seebeck coefficient in 2D material nanostructures via scanning thermal gate microscopy
- 2019Visualisation of subsurface defects in van-der-Waals heterostructures via 3D SPM mapping
- 2018Geometrically Enhanced Thermoelectric Effects in Graphene Nanoconstrictionscitations
- 2018Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiationcitations
- 2017Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in aircitations
- 2017Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in air
- 2017Correlation of nano-scale electrical and topographical mapping of buried nanoscale semiconductor junctions
- 2017Imaging subsurface defects in WS2/WSe2 CVD flakes via Ultrasonic Force Microscopies
- 2017Subsurface imaging of stacking faults and dislocations in WS2 CVD grown flakes via Ultrasonic and Heterodyne Force Microscopy
- 2017Characterisation of local thermal properties in nanoscale structures by scanning thermal microscopy
- 2017Subsurface imaging of two-dimensional materials at the nanoscalecitations
- 2015Nanometre scale 3D nanomechanical imaging of semiconductor structures from few nm to sub-micrometre depthscitations
- 2014Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxycitations
- 2014Nanomechanical morphology of amorphous, transition, and crystalline domains in phase change memory thin filmscitations
- 2014Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopycitations
- 2014How Deep Ultrasonic and Heterodyne Force Microscopies Can Look at the Nanostructure of 2D Materials?
- 2013Atomic force acoustic microscopy
- 2005Application specific integrated circuitry for controlling analysis of a fluid
- 2005Multiparameteric oil condition sensor based on the tuning fork technology for automotive applicationscitations
- 2004Application specific integrated circuitry for controlling analysis of a fluid
- 2003Local probing of thermal properties at submicron depths with megahertz photothermal vibrations.citations
- 2002Nanometer-scale mechanical imaging of aluminum damascene interconnect structures in a low-dielectric-constant polymer.citations
- 2000Nanoscale elastic imaging of aluminum/low-k dielectric interconnect structures
Places of action
Organizations | Location | People |
---|
article
Subsurface imaging of two-dimensional materials at the nanoscale
Abstract
Scanning probe microscopy (SPM) represents a powerful tool that, in the past 30 years, has allowed for the investigation of material surfaces in unprecedented ways at the nanoscale level. However, SPM has shown very little capability for depth penetration, which several nanotechnology applications require. Subsurface imaging has been achieved only in a few cases, when subsurface features influence the physical properties of the surface, such as the electronic states or the heat transfer. Ultrasonic force microscopy (UFM), an adaption of the contact mode atomic force microscopy, can dynamically measure the stiffness of the elastic contact between the probing tip and the sample surface. In particular, UFM has proven highly sensitive to the near-surface elastic field in non-homogeneous samples. In this paper, we present an investigation of two-dimensional (2D) materials, namely flakes of graphite and molybdenum disulphide placed on structured polymeric substrates. We show that UFM can non-destructively distinguish suspended and supported areas and localise defects, such as buckling or delamination of adjacent monolayers, generated by residual stress. Specifically, UFM can probe small variations in the local indentation induced by the mechanical interaction between the tip and the sample. Therefore, any change in the elastic modulus within the volume perturbed by the applied load or the flexural bending of the suspended areas can be detected and imaged. These investigation capabilities are very promising in order to study the buried interfaces of nanostructured 2D materials such as in graphene-based devices.