People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kartal, Mehmet E.
University of Aberdeen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024The influence of post-thermal treatments on microstructure and mechanical properties in A20X alloy fabricated through powder bed fusioncitations
- 2024Crystal plasticity based constitutive model for deformation in metastable β titanium alloyscitations
- 2022A Multiscale Constitutive Model for Metal Forming of Dual Phase Titanium Alloys by Incorporating Inherent Deformation and Failure Mechanismscitations
- 2022Effect of Hydrogen and Defects on Deformation and Failure of Austenitic Stainless Steel
- 2021Mesoscale Model for Predicting Hydrogen Damage in Face Centred Cubic Crystalscitations
- 2021Computational Modelling of Microstructural Deformation in Metastable β Titanium Alloys
- 2020Modelling Hydrogen Induced Stress Corrosion Cracking in Austenitic Stainless Steelcitations
- 2020Classifying shape of internal pores within AlSi10Mg alloy manufactured by laser powder bed fusion using 3D X-ray micro computed tomography: influence of processing parameters and heat treatmentcitations
- 2020Hydrogen effect on plastic deformation and fracture in austenitic stainless steel
- 2020Crystal Plasticity based Study to Understand the Interaction of Hydrogen, Defects and Loading in Austenitic Stainless Steel Single Crystalscitations
- 2019A CPFEM based study to understand the void growth in high strength dual-phase Titanium alloy (Ti-10V-2Fe-3Al)citations
- 2019Representative volume element (RVE) based crystal plasticity study of void growth on phase boundary in titanium alloyscitations
- 2017Three-dimensional in situ observations of compressive damage mechanisms in syntactic foam using X-ray microcomputed tomographycitations
- 2016The effect of specimen size and Surface conditions on the local mechanical properties of 14MoV6 ferritic–pearlitic steelcitations
Places of action
Organizations | Location | People |
---|
article
Crystal plasticity based constitutive model for deformation in metastable β titanium alloys
Abstract
Due to attractive mechanical properties, metastable β titanium alloys have become very popular in many industries including aerospace, marine, biomedical, and many more. It is often the complex interplay among the different deformation mechanisms that produces many of the sought-after properties, such as enhanced ductility, super-elasticity, and shape memory effects. Stress induced martensitic transformation is an important deformation mechanism for these alloys. Understanding of it and the influence it has on the microstructural evolution of materials is of great importance. To this end we have developed a crystal plasticity based constitutive model which accounts for both martensitic phase transformation and slip based plasticity simultaneously in metastabletitanium alloys. We present a new formulation for the evolution of martensite transformation, based on physical principles and crystal plasticity theory. To understand and demonstrate this feature of the model, a parametric assessment of the newly developed constitutive model is conducted. This is followed by first of its kind analyses of stress induced martensitic transformation in metastabletitanium alloys. We firstly present validations against uniaxial loading experiments for different metastabletitanium alloys exhibiting stress induced martensite (SIM) transformation. As part of this, single crystal simulations in metastabletitanium alloys are used for the first time to investigate the interaction of individual transformation systems during unconstrained transformation. This study shows good agreement between the experimental and simulated responses during all stages of deformation in which elastic, transformation and finally the slip stage are exhibited. Relatively “strong” and “weak” orientations for transformation are observed, consistent with experimental studies. The work done here demonstrates the ability of this crystal plasticity finite element method (CPFEM) to capture physical mechanisms while bringing new insight about the interaction of different deformation mechanisms in metastabletitanium alloys.