Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sohail, Tanvir

  • Google
  • 2
  • 11
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023An Atomistic-Continuum Concurrent Statistical Coupling Technique for Amorphous Materials using Anchor Points4citations
  • 2023Enhancing Composite Toughness Through Hierarchical Interphase Formation4citations

Places of action

Chart of shared publication
Roy, Samit
1 / 1 shared
Aditya, Sankha Subhra
1 / 1 shared
Naskar, Amit K.
1 / 1 shared
Bowland, Christopher C.
1 / 2 shared
Rohewal, Sargun S.
1 / 1 shared
Toomey, Michael D.
1 / 1 shared
Checa, Marti
1 / 3 shared
Kearney, Logan T.
1 / 2 shared
Kanbargi, Nihal
1 / 1 shared
Damron, Joshua T.
1 / 1 shared
Collins, Liam
1 / 8 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Roy, Samit
  • Aditya, Sankha Subhra
  • Naskar, Amit K.
  • Bowland, Christopher C.
  • Rohewal, Sargun S.
  • Toomey, Michael D.
  • Checa, Marti
  • Kearney, Logan T.
  • Kanbargi, Nihal
  • Damron, Joshua T.
  • Collins, Liam
OrganizationsLocationPeople

article

An Atomistic-Continuum Concurrent Statistical Coupling Technique for Amorphous Materials using Anchor Points

  • Roy, Samit
  • Sohail, Tanvir
  • Aditya, Sankha Subhra
Abstract

<jats:title>Abstract</jats:title><jats:p>A generalized framework for anchor point based concurrent coupling of finite element method (FEM) and molecular dynamics (MD) domains, incorporating previous related methods, is presented. The framework is robust and is agnostic of material crystallinity and atomistic description. The method follows an iterative approach to minimize the total energy of the coupled FEM-MD system, while maintaining displacement constraints between the domains. Two distinct forms of the coupling method are discussed in detail, differing in the nature of the constraint, both of which are able to make use of specialized MD solvers such as LAMMPS with little or no modification. Both methods make use of springs that join groups of atoms in the MD to the FEM domain. Method 1, termed “Direct Coupling”, couples MD anchor points directly to the FEM domain in a force-based manner and has the added advantage of being able to couple to specialized FEM solvers such as ABAQUS. Method 2 couples the MD to the FEM domain in a more “soft” manner using the method of Lagrange multipliers and least squares approximation. The relative performance of these two methods are tested against each other in a uniaxial tension test using a graphene monolayer at 300 K temperature and a block of thermosetting polymer EPON862 at low temperature, showing comparable results. Convergence behaviour of the two coupling methods are studied and presented. The methods are then applied to the fracture of a center-cracked graphene monolayer and compared with results from an identical pure MD simulation. The results corroborate the effectiveness of the developed method and potential use as a plug-and-play tool to couple pre-existing specialized FEM and MD solvers. Future work will focus on applying these methods to simulate elevated-temperature amorphous polymer models and their brittle fracture.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • amorphous
  • simulation
  • molecular dynamics
  • crystallinity
  • tension test