Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Maurya, Sumit Kumar

  • Google
  • 1
  • 3
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Crack mediated dislocation activities in Al/Ti nanolayered composites: an atomistic study1citations

Places of action

Chart of shared publication
Alankar, Alankar
1 / 6 shared
Nie, Jian-Feng
1 / 2 shared
Chandra, Sagar
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Alankar, Alankar
  • Nie, Jian-Feng
  • Chandra, Sagar
OrganizationsLocationPeople

article

Crack mediated dislocation activities in Al/Ti nanolayered composites: an atomistic study

  • Alankar, Alankar
  • Nie, Jian-Feng
  • Maurya, Sumit Kumar
  • Chandra, Sagar
Abstract

<jats:title>Abstract</jats:title><jats:p>In this work, to understand crack propagation in Al/Ti nanolayered composites, a series of molecular dynamic simulations were performed with crack in different layers of the nanolayered composites and subjected to mode I loading. Nanolayered composite with a crack in Al layer, and monolithic Al show ductile fracture behavior that occurs by nucleation of Shockley partial dislocation at the crack tip. On the other hand, the fracture behavior in nanolayered composites with a crack in Ti shows crack bowing which is similar to the brittle fracture, and subsequent crack trapping at the interface. However, monolithic Ti shows typical cleavage fracture followed by activation of basal and pyramidal <jats:inline-formula><jats:tex-math><?CDATA $ c\,+\,a$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mo fence="false" stretchy="false">⟨</mml:mo><mml:mi>c</mml:mi><mml:mo>+</mml:mo><mml:mi>a</mml:mi><mml:mo fence="false" stretchy="false">⟩</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="msmsac99d0ieqn1.gif" xlink:type="simple" /></jats:inline-formula> slip that blunts the crack leading to ductile fracture. When the crack is in the Ti layer, the other Ti layers in a nanolayered composite deform by prismatic and pyramidal <jats:inline-formula><jats:tex-math><?CDATA $ c\,+\,a$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mo fence="false" stretchy="false">⟨</mml:mo><mml:mi>c</mml:mi><mml:mo>+</mml:mo><mml:mi>a</mml:mi><mml:mo fence="false" stretchy="false">⟩</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="msmsac99d0ieqn2.gif" xlink:type="simple" /></jats:inline-formula> slip. However, the Ti layer deforms only via slip on prismatic planes when the crack is in the Al layer. Critical strain energy release rate <jats:italic>G</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub> based continuum analysis predicts the fracture mode in monolithic Ti correctly, but it fails to predict the fracture mode in monolithic Al and nanolayered composites with crack in the Al layer. It is found that the <jats:italic>G</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub> determined based on external loading is marginally higher when the crack is in the Al layer as compared against the case when the crack is in the Ti layer. The <jats:italic>G</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub> value for the basal and pyramidal slip in Ti is higher than the <jats:italic>G</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub> value for cleavage. This poses an interesting phenomenon since the <jats:italic>G</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub> in monolithic Al is found to be much lower than that of monolithic Ti. The reason is attributed to the constrained plasticity in the presence of an Al/Ti interface.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • crack
  • composite
  • dislocation
  • activation
  • plasticity
  • fracture behavior