Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van Nuland, Tim

  • Google
  • 3
  • 5
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023On the anisotropy of thick-walled wire arc additively manufactured stainless steel parts23citations
  • 2022Microstructural modeling and measurements of anisotropic plasticity in large scale additively manufactured 316L stainless steel13citations
  • 2021A novel 3D anisotropic Voronoi microstructure generator with an advanced spatial discretization scheme7citations

Places of action

Chart of shared publication
Geers, Mgd Marc
2 / 117 shared
Van Dommelen, Johannes A. W.
3 / 32 shared
Hoefnagels, Jpm Johan
2 / 71 shared
Palmeira Belotti, Luca
3 / 8 shared
Geers, M. G. D.
1 / 95 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Geers, Mgd Marc
  • Van Dommelen, Johannes A. W.
  • Hoefnagels, Jpm Johan
  • Palmeira Belotti, Luca
  • Geers, M. G. D.
OrganizationsLocationPeople

article

A novel 3D anisotropic Voronoi microstructure generator with an advanced spatial discretization scheme

  • Van Dommelen, Johannes A. W.
  • Geers, M. G. D.
  • Palmeira Belotti, Luca
  • Van Nuland, Tim
Abstract

At the microstructural scale, Voronoi tessellations are commonly used to represent a polycrystalline morphology. However, due to spherical growth of nuclei, an anisotropic tessellation with spatially varying elongated grain directions, which is present in many applications, cannot be obtained. In this work, a novel 3D anisotropic Voronoi algorithm is presented, together with its implementation and two application cases. The proposed algorithm takes into account preferred grain growth directions, aspect ratios and sizes in the definition of an ellipsoidal growth velocity field defined per grain. For applications in which a predetermined mesh is used, e.g. voxel-mesh based simulations, the grains are extracted in a straight-forward manner. In cases where a fully grain conforming discretization is desired, e.g. finite element simulations, a hexahedral mesh generator is incorporated to arrive at a discretization which can be directly used in microstructural modeling simulations. Two application cases are studied (a wire + arc additively manufactured and a magnesium alloy microstructure) in which the algorithm's capability for curved, non-convex, periodic domains is shown. Furthermore, the resulting grain morphology is compared to experimental data in terms of grain size, grain aspect ratio and grain columnar direction distribution. In both cases, the algorithm adequately produces a representative volume element with convincing representativeness of the experimental data. The 3D anisotropic Voronoi algorithm is highly versatile in a wide range of application cases, specifically suitable for the generation of polycrystalline microstructures that include grains with spatially varying elongated directions.

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • simulation
  • Magnesium
  • magnesium alloy
  • Magnesium
  • anisotropic
  • wire
  • grain growth
  • polycrystalline microstructure