People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kyritsakis, Andreas
University of Tartu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Polarization characteristics and structural modifications of Cu nanoparticles under high electric fields
- 2023Biased self-diffusion on Cu surface due to electric field gradientscitations
- 2023Critical review on experimental and theoretical studies of elastic properties of wurtzite-structured ZnO nanowirescitations
- 2022Thermal, Mechanical, and Acoustic Properties of Polydimethylsiloxane Filled with Hollow Glass Microspherescitations
- 2022Biased self-diffusion on Cu surface due to electric field gradientscitations
- 2020Tungsten migration energy barriers for surface diffusioncitations
- 2019Ab initio calculation of field emission from metal surfaces with atomic-scale defectscitations
- 2016Atomistic modeling of metal surfaces under high electric fieldscitations
- 2016Effects of control oxide material on the charging times of metal nanoparticles inside non-volatile memories
- 2016Extension of the general thermal field equation for nanosized emitterscitations
Places of action
Organizations | Location | People |
---|
article
Tungsten migration energy barriers for surface diffusion
Abstract
<p>We have calculated the migration barriers for surface diffusion on tungsten. Our results form a self-sufficient parameterisation for kinetic Monte Carlo simulations of arbitrarily rough atomic tungsten surfaces, as well as nanostructures such as nanotips and nanoclusters. The parameterisation includes first- and second-nearest neighbour atom jump processes, as well as a third-nearest neighbour exchange process. The migration energy barriers of all processes are calculated with the nudged elastic band method. The same attempt frequency for all processes is found sufficient and the value is fitted to molecular dynamics simulations. The model is validated by correctly simulating with kinetic Monte Carlo the energetically favourable W nanocluster shapes, in good agreement with molecular dynamics simulations.</p>