Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brar, Jaskirat

  • Google
  • 2
  • 9
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Lattice effects on the physical properties of half-doped perovskite ruthenates4citations
  • 2023Evidence of lattice strain as a precursor to superconductivity in BaPb<sub>0.75</sub>Bi<sub>0.25</sub>O<sub>3</sub>1citations

Places of action

Chart of shared publication
Sharma, Priyamedha
1 / 1 shared
Takeuchi, Tsunehiro
1 / 4 shared
Kuga, Kentaro
1 / 2 shared
Singh, Saurabh
1 / 10 shared
Singh, Ravi Shankar
1 / 4 shared
Bansal, Sakshi
1 / 2 shared
Ali, Asif
1 / 3 shared
Pant, Himanshu
1 / 1 shared
Bharath, M.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sharma, Priyamedha
  • Takeuchi, Tsunehiro
  • Kuga, Kentaro
  • Singh, Saurabh
  • Singh, Ravi Shankar
  • Bansal, Sakshi
  • Ali, Asif
  • Pant, Himanshu
  • Bharath, M.
OrganizationsLocationPeople

article

Evidence of lattice strain as a precursor to superconductivity in BaPb<sub>0.75</sub>Bi<sub>0.25</sub>O<sub>3</sub>

  • Singh, Ravi Shankar
  • Bansal, Sakshi
  • Ali, Asif
  • Pant, Himanshu
  • Brar, Jaskirat
  • Bharath, M.
Abstract

<jats:title>Abstract</jats:title><jats:p>In this work, we have investigated the precursor effects to superconductivity in BaPb<jats:sub>0.75</jats:sub>Bi<jats:sub>0.25</jats:sub>O<jats:sub>3</jats:sub> using temperature dependent resistivity, x-ray diffraction technique and photoemission spectroscopy. The present compound exhibits superconductivity around 11 K (<jats:inline-formula><jats:tex-math><?CDATA $T_{C}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cmacabf4ieqn1.gif" xlink:type="simple" /></jats:inline-formula>). The synthesis procedure adopted is much simpler as compared to the procedure available in the literature. In the temperature range (10 K–25 K) i.e. above <jats:inline-formula><jats:tex-math><?CDATA $T_{C}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cmacabf4ieqn2.gif" xlink:type="simple" /></jats:inline-formula>, our results show an increase in both the orthorhombic and tetragonal strain. The well screened features observed in Bi and Pb 4<jats:inline-formula><jats:tex-math><?CDATA $f_{7/2}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mn>7</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cmacabf4ieqn3.gif" xlink:type="simple" /></jats:inline-formula> core levels are indicative of the metallic nature of the sample. The compound exhibits finite intensity at the Fermi level at 300 K and this intensity decreases with decrease in temperature and develops into a pseudogap; the energy dependence of the spectral density of states suggests disordered metallic state. Furthermore, our band structure calculations reveal that the structural transition upon Pb doping results in the closing of the band gap at the Fermi level.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • compound
  • resistivity
  • x-ray diffraction
  • band structure
  • superconductivity
  • superconductivity