Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oehme, Michael

  • Google
  • 9
  • 61
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Lateral Mn$_5$Ge$_3$ spin-valve in contact with a high-mobility Ge two-dimensional hole gascitations
  • 2024Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductors4citations
  • 2024Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductors4citations
  • 2023Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser melting11citations
  • 2022Two-dimensional hole gases in SiGeSn alloys8citations
  • 2022Monolithic Integration of Gesn on Si for IR Camera Demonstrationcitations
  • 2022Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser meltingcitations
  • 2021Composition and magnetic properties of thin films grown by interdiffusion of Mn and Sn-Rich, Ge lattice matched SixGe1-x-ySny layers1citations
  • 2021Formation of Mn$_{5}$Ge$_{3}$ on a Recess-Etched Ge (111) Quantum-Well Structure for Semiconductor Spintronics2citations

Places of action

Chart of shared publication
Weißhaupt, David
3 / 3 shared
Schubert, Markus Andreas
1 / 11 shared
Van Slageren, Joris
1 / 8 shared
Bloos, Dominik
1 / 2 shared
Funk, Hannes Simon
1 / 1 shared
Wenger, Christian
1 / 10 shared
Sürgers, Christoph
2 / 27 shared
Fischer, Gerda
2 / 8 shared
Schulze, Jörg
4 / 5 shared
Fischer, Inga Anita
1 / 4 shared
Benkhelifa, Aimen
2 / 2 shared
Kiyek, Vivien
2 / 3 shared
Liu, Teren
2 / 2 shared
Capellini, Giovanni
2 / 26 shared
Schulze, Jorg
2 / 2 shared
Chelnokov, Alexei
2 / 8 shared
Schwarz, Daniel
7 / 11 shared
Witzens, Jeremy
2 / 3 shared
Hartmann, Jean-Michel
2 / 24 shared
Grutzmacher, Detlev
1 / 1 shared
Seidel, Lukas
2 / 2 shared
Spirito, Davide
2 / 23 shared
Buca, Dan
2 / 14 shared
Concepcion, Omar
1 / 1 shared
Ikonic, Zoran
2 / 6 shared
Marzban, Bahareh
2 / 2 shared
Grützmacher, Detlev
1 / 30 shared
Concepción, Omar
1 / 4 shared
Georgiev, Yordan M.
2 / 7 shared
Steuer, Oliver
2 / 6 shared
Mączko, H.
1 / 1 shared
Kudrawiec, Robert
2 / 8 shared
Heller, R.
1 / 4 shared
Hübner, R.
1 / 8 shared
Helm, M.
1 / 8 shared
Fischer, I. A.
1 / 2 shared
Prucnal, Slawomir
2 / 11 shared
Zhou, Shengqiang
2 / 15 shared
Khan, M. M.
1 / 10 shared
Schulze, J.
1 / 4 shared
Kasper, Erich
1 / 1 shared
Hersperger, Tim
1 / 1 shared
Wanitzek, Maurice
2 / 2 shared
Sigle, Eric
1 / 1 shared
Burghartz, Joachim
1 / 2 shared
Kaschel, Mathias
1 / 1 shared
Epple, Steffen
1 / 1 shared
Schad, Lena
1 / 1 shared
Hack, Michael
1 / 2 shared
Yu, Zili
1 / 1 shared
Khan, Muhammad Moazzam
1 / 1 shared
Fischer, Inga A.
3 / 3 shared
Mączko, Herbert
1 / 1 shared
Helm, Manfred
1 / 13 shared
Heller, René
1 / 4 shared
Hübner, René
1 / 25 shared
Kern, Michal
1 / 4 shared
Funk, Hannes S.
2 / 3 shared
Slageren, Joris Van
2 / 6 shared
Surgers, Christoph
1 / 1 shared
Weisshaupt, David
1 / 1 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Weißhaupt, David
  • Schubert, Markus Andreas
  • Van Slageren, Joris
  • Bloos, Dominik
  • Funk, Hannes Simon
  • Wenger, Christian
  • Sürgers, Christoph
  • Fischer, Gerda
  • Schulze, Jörg
  • Fischer, Inga Anita
  • Benkhelifa, Aimen
  • Kiyek, Vivien
  • Liu, Teren
  • Capellini, Giovanni
  • Schulze, Jorg
  • Chelnokov, Alexei
  • Schwarz, Daniel
  • Witzens, Jeremy
  • Hartmann, Jean-Michel
  • Grutzmacher, Detlev
  • Seidel, Lukas
  • Spirito, Davide
  • Buca, Dan
  • Concepcion, Omar
  • Ikonic, Zoran
  • Marzban, Bahareh
  • Grützmacher, Detlev
  • Concepción, Omar
  • Georgiev, Yordan M.
  • Steuer, Oliver
  • Mączko, H.
  • Kudrawiec, Robert
  • Heller, R.
  • Hübner, R.
  • Helm, M.
  • Fischer, I. A.
  • Prucnal, Slawomir
  • Zhou, Shengqiang
  • Khan, M. M.
  • Schulze, J.
  • Kasper, Erich
  • Hersperger, Tim
  • Wanitzek, Maurice
  • Sigle, Eric
  • Burghartz, Joachim
  • Kaschel, Mathias
  • Epple, Steffen
  • Schad, Lena
  • Hack, Michael
  • Yu, Zili
  • Khan, Muhammad Moazzam
  • Fischer, Inga A.
  • Mączko, Herbert
  • Helm, Manfred
  • Heller, René
  • Hübner, René
  • Kern, Michal
  • Funk, Hannes S.
  • Slageren, Joris Van
  • Surgers, Christoph
  • Weisshaupt, David
OrganizationsLocationPeople

article

Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser melting

  • Georgiev, Yordan M.
  • Oehme, Michael
  • Steuer, Oliver
  • Schwarz, Daniel
  • Mączko, H.
  • Kudrawiec, Robert
  • Heller, R.
  • Hübner, R.
  • Helm, M.
  • Fischer, I. A.
  • Prucnal, Slawomir
  • Zhou, Shengqiang
  • Khan, M. M.
  • Schulze, J.
Abstract

<jats:title>Abstract</jats:title><jats:p>The pseudomorphic growth of Ge<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Sn<jats:italic><jats:sub>x</jats:sub></jats:italic> on Ge causes in-plane compressive strain, which degrades the superior properties of the Ge<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Sn<jats:italic><jats:sub>x</jats:sub></jats:italic> alloys. Therefore, efficient strain engineering is required. In this article, we present strain and band-gap engineering in Ge<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Sn<jats:italic><jats:sub>x</jats:sub></jats:italic> alloys grown on Ge a virtual substrate using post-growth nanosecond pulsed laser melting (PLM). Micro-Raman and x-ray diffraction (XRD) show that the initial in-plane compressive strain is removed. Moreover, for PLM energy densities higher than 0.5 J cm<jats:sup>−2</jats:sup>, the Ge<jats:sub>0.89</jats:sub>Sn<jats:sub>0.11</jats:sub> layer becomes tensile strained. Simultaneously, as revealed by Rutherford Backscattering spectrometry, cross-sectional transmission electron microscopy investigations and XRD the crystalline quality and Sn-distribution in PLM-treated Ge<jats:sub>0.89</jats:sub>Sn<jats:sub>0.11</jats:sub> layers are only slightly affected. Additionally, the change of the band structure after PLM is confirmed by low-temperature photoreflectance measurements. The presented results prove that post-growth ns-range PLM is an effective way for band-gap and strain engineering in highly-mismatched alloys.</jats:p>

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • transmission electron microscopy
  • spectrometry
  • band structure
  • Rutherford backscattering spectrometry