Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Harinath Reddy, Dr. Baddipalli

  • Google
  • 2
  • 4
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Revelation of Mott insulating state in layered honeycomb lattice Li2RuO32citations
  • 2021Electronic structure of ternary palladates and effect of hole doping: a valence band photoemission spectroscopic study5citations

Places of action

Chart of shared publication
Singh, Ravi Shankar
2 / 4 shared
Bansal, Sakshi
1 / 2 shared
Reddy, B. H.
2 / 2 shared
Ali, Asif
2 / 3 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Singh, Ravi Shankar
  • Bansal, Sakshi
  • Reddy, B. H.
  • Ali, Asif
OrganizationsLocationPeople

article

Electronic structure of ternary palladates and effect of hole doping: a valence band photoemission spectroscopic study

  • Singh, Ravi Shankar
  • Harinath Reddy, Dr. Baddipalli
  • Reddy, B. H.
  • Ali, Asif
Abstract

<jats:title>Abstract</jats:title><jats:p>We investigate the electronic structure of ternary palladates <jats:italic>A</jats:italic>Pd<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> (<jats:italic>A</jats:italic> = Sr, Ca) using valence band photoemission spectroscopy and band structure calculations. Energy positions of various features and overall width of the experimental valence band spectra are well captured by band structure calculations using hybrid functional. Band structure calculations within local density approximations lead to metallic ground state while the calculations using hybrid functional provide band gap of 0.25 eV and 0.22 eV for CaPd<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> and SrPd<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> respectively, suggesting moderate to strong electron correlation strength in these narrow band gap semiconducting palladates. High resolution spectra reveal negligibly small intensity at Fermi level, <jats:italic>E</jats:italic><jats:sub>F</jats:sub>, for parent compounds, while hole doped SrPd<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> (by 15% Li substitution at Sr site) exhibits a Fermi cut-off suggesting metallic character in contrast to semiconducting transport. These observations reveal the importance of localization of electrons in case where the Fermi edge falls in the mobility edge.</jats:p>

Topics
  • density
  • compound
  • mobility
  • strength
  • band structure
  • spectroscopy