Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rojassánchez, J. C.

  • Google
  • 1
  • 10
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Intrinsic and extrinsic relaxation mechanisms for controlling spin current intensity in Fe 100-x Co x /bilayerscitations

Places of action

Chart of shared publication
Martínez, A. A. Pérez
1 / 1 shared
Avilés-Félix, L.
1 / 3 shared
Aguirre, Myriam Haydee
1 / 11 shared
Goijman, D.
1 / 3 shared
Morbidel, Leonardo
1 / 1 shared
Torres, T. E.
1 / 3 shared
Milano, Julián
1 / 1 shared
Velázquez Rodriguez, Daniel
1 / 1 shared
Gómez, J. E.
1 / 1 shared
Torres, J. L. Ampuero
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Martínez, A. A. Pérez
  • Avilés-Félix, L.
  • Aguirre, Myriam Haydee
  • Goijman, D.
  • Morbidel, Leonardo
  • Torres, T. E.
  • Milano, Julián
  • Velázquez Rodriguez, Daniel
  • Gómez, J. E.
  • Torres, J. L. Ampuero
OrganizationsLocationPeople

article

Intrinsic and extrinsic relaxation mechanisms for controlling spin current intensity in Fe 100-x Co x /bilayers

  • Martínez, A. A. Pérez
  • Avilés-Félix, L.
  • Aguirre, Myriam Haydee
  • Rojassánchez, J. C.
  • Goijman, D.
  • Morbidel, Leonardo
  • Torres, T. E.
  • Milano, Julián
  • Velázquez Rodriguez, Daniel
  • Gómez, J. E.
  • Torres, J. L. Ampuero
Abstract

<jats:title>Abstract</jats:title><jats:p>Controlling the damping parameter in metallic ferromagnetic thin films is a key step for spintronic applications in which spin currents are generated by spin pumping. The coexistence of two states with low and high damping constant values would allow to obtain states of high and low spin current intensity, respectively. We have fabricated Fe<jats:inline-formula><jats:tex-math/><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>100</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula>Co<jats:sub><jats:italic>x</jats:italic></jats:sub>/Ta (with nominal <jats:italic>x</jats:italic> = 0, 15, 20, 25, 30 and 35) bilayers in which the Fe<jats:inline-formula><jats:tex-math/><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>100</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula>Co<jats:sub><jats:italic>x</jats:italic></jats:sub> layers grow epitaxially and the Ta layer is polycrystalline. We have found the coexistence of Gilbert damping and two magnon scattering mechanisms linked to a sign change in the magnetocrystalline anisotropy constant that allows the manipulation of low and high intensity states of the measured inverse spin Hall effect voltage. Bilayers with lower Co concentrations (<jats:inline-formula><jats:tex-math/><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mi>x</mml:mi><mml:mtext>⩽</mml:mtext></mml:mrow></mml:math></jats:inline-formula> 25%) present different relaxation mechanisms (isotropic Gilbert damping and two magnon scattering) and an extra ferromagnetic resonance linewidth broadening produced due to mosaicity. Bilayers with Co concentration <jats:inline-formula><jats:tex-math/><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mi>x</mml:mi><mml:mo>&gt;</mml:mo></mml:mrow></mml:math></jats:inline-formula> 25% present a dominating Gilbert damping for all directions in the film plane. However, in this concentration range the damping constant is anisotropic and when the magnetic field is applied along the hard magnetization direction <jats:italic>α</jats:italic> increases ∼420% with respect to the value obtained for the easy magnetization direction. Coexistence of isotropic Gilbert damping and two magnon scattering generated spin currents 2.5 times larger when the field is applied along the hard magnetization axis compared to the value observed in the easy magnetization axis. Thesefindings make the Fe<jats:inline-formula><jats:tex-math/><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>100</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula>Co<jats:sub><jats:italic>x</jats:italic></jats:sub>/Ta system an excellent candidate for spintronic device applications.</jats:p>

Topics
  • impedance spectroscopy
  • thin film
  • anisotropic
  • isotropic
  • magnetization