Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Phacheerak, Kanoknan

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Elastic properties of A<sub>2</sub>Ti<sub>6</sub>O<sub>13</sub> (A=H, Li, Na, K and Rb) : a computational study2citations

Places of action

Chart of shared publication
Boonchun, Adisak
1 / 1 shared
Simalaotao, Kodchakorn
1 / 2 shared
Maluangnont, Tosapol
1 / 1 shared
Thanasarnsurapong, Thanasee
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Boonchun, Adisak
  • Simalaotao, Kodchakorn
  • Maluangnont, Tosapol
  • Thanasarnsurapong, Thanasee
OrganizationsLocationPeople

article

Elastic properties of A<sub>2</sub>Ti<sub>6</sub>O<sub>13</sub> (A=H, Li, Na, K and Rb) : a computational study

  • Phacheerak, Kanoknan
  • Boonchun, Adisak
  • Simalaotao, Kodchakorn
  • Maluangnont, Tosapol
  • Thanasarnsurapong, Thanasee
Abstract

<jats:title>Abstract</jats:title><jats:p>The elastic properties of the alkali hexatitanate family A<jats:sub>2</jats:sub>Ti<jats:sub>6</jats:sub>O<jats:sub>13</jats:sub> (A = H, Li, Na, K, and Rb) are investigated which based on Density Functional Theory (DFT) within Generalized Gradient Approximation plus Hubbard <jats:italic>U</jats:italic> (GGA+<jats:italic>U</jats:italic>) approach. The results showed that all members of the family are wide-band semiconductors and the calculated lattice parametersare consistent with experimental values. In terms of mechanical stability, the results indicated that the alkali hexatitanates are highly incompressible to uniaxial stress, with the largest elastic constant C<jats:sub>22</jats:sub> reaching values as high as 265 GPa inK<jats:sub>2</jats:sub>Ti<jats:sub>6</jats:sub>O<jats:sub>13</jats:sub>. The obtained elastic constants, using the stress-strain method, were used to calculate bulk modulus, shear modulus, Young's modulus, brittleness and ductility, elastic anisotropy, Vickers hardness, sound velocities, and the Debye temperature. It was found that the member of the family with the highest atomic number of the alkaline group,Rb<jats:sub>2</jats:sub>Ti<jats:sub>6</jats:sub>O<jats:sub>13</jats:sub>, had the highest values of bulk, shear, and Young's modulus, as well as the lowest values of shear and compression anisotropy, and a high Vickers hardness.&amp;#xD;</jats:p>

Topics
  • density
  • theory
  • semiconductor
  • hardness
  • density functional theory
  • ductility
  • bulk modulus