Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kama, Adi

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Steady-state optoelectronic measurements of halide perovskites on a selective contactcitations

Places of action

Chart of shared publication
Cahen, David
1 / 13 shared
Balberg, Isaac
1 / 3 shared
Millo, Oded
1 / 5 shared
Itzhak, Anat
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Cahen, David
  • Balberg, Isaac
  • Millo, Oded
  • Itzhak, Anat
OrganizationsLocationPeople

article

Steady-state optoelectronic measurements of halide perovskites on a selective contact

  • Cahen, David
  • Balberg, Isaac
  • Millo, Oded
  • Kama, Adi
  • Itzhak, Anat
Abstract

Most of the charge transport properties in halide perovskite (HaP) absorbers are measured by transient measurements with pulsed excitations; however, most solar cells in real life function in steady-state conditions. In contrast to working devices that include selective contacts, steady-state measurements need as high as possible photoconductivity (sigma ph), which is typically restricted to the absorber alone. In this paper, we enabled steady-state charge transport measurement using atomic layer deposition (ALD) to grow a conformal, ultra-thin (similar to 4 nm) ZnO electron transport layer that is laterally insulating due to its thickness. Due to the highly alkaline behavior of the ZnO surfaces, it readily reacts with halide Perovskites. ALD process was used to form an Aluminum oxynitride (AlON) thin (similar to 2 nm) layer that passivates the ZnO-HaP interface. We show that the presence of the AlON layer prevents HaP degradation caused by the interaction with the ZnO layer, improves the HaP sigma ph, and doubles the HaP carrier diffusion lengths.<br />

Topics
  • perovskite
  • impedance spectroscopy
  • surface
  • aluminium
  • atomic layer deposition
  • photoconductivity