Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Archana, J.

  • Google
  • 4
  • 12
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Confined oxidation of 2D WS2 nanosheets forming WO3/WS2 nanocomposites for room temperature NO2 gas sensing application14citations
  • 2024Modulating Fermi energy in few-layer MoS<sub>2</sub><i>via</i> metal passivation with enhanced detectivity for near IR photodetector1citations
  • 2023Suppression of intrinsic thermal conductivity in Sr<sub>1−<i>x</i></sub>Gd<sub><i>x</i></sub>TiO<sub>3</sub> ceramics <i>via</i> phonon-point defect scattering for enhanced thermoelectric application7citations
  • 2022Tailoring the electrical and thermal transport properties of LaCoO<sub>3</sub> ceramic by band engineering and Fermi energy optimization via isovalent Al-substitution for thermoelectric application8citations

Places of action

Chart of shared publication
Kamalakannan, S.
1 / 1 shared
Patrick, D. Simon
1 / 1 shared
Navaneethan, M.
2 / 7 shared
Bharathi, P.
1 / 2 shared
Mohan, M. Krishna
1 / 1 shared
Ponnusamy, S.
2 / 2 shared
Vinoth, E.
1 / 1 shared
Rengarajan, Abinaya
1 / 1 shared
Vijay, V.
1 / 1 shared
Sundari, R. Shanmuka
1 / 1 shared
Navaneethan, Mani
2 / 2 shared
Jibri, K. P. Mohamed
1 / 1 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Kamalakannan, S.
  • Patrick, D. Simon
  • Navaneethan, M.
  • Bharathi, P.
  • Mohan, M. Krishna
  • Ponnusamy, S.
  • Vinoth, E.
  • Rengarajan, Abinaya
  • Vijay, V.
  • Sundari, R. Shanmuka
  • Navaneethan, Mani
  • Jibri, K. P. Mohamed
OrganizationsLocationPeople

article

Tailoring the electrical and thermal transport properties of LaCoO<sub>3</sub> ceramic by band engineering and Fermi energy optimization via isovalent Al-substitution for thermoelectric application

  • Navaneethan, Mani
  • Archana, J.
  • Jibri, K. P. Mohamed
Abstract

<jats:title>Abstract</jats:title><jats:p>Recognizing high performance thermoelectric (TE) ceramics is challenging due to high thermal conductivity and interdependent electrical and thermal transport properties. Herein we report the strategy of isovalent Al substitution in LaCoO<jats:sub>3</jats:sub>, which resulted in the enhancement of electrical conductivity by band engineering and increased charge carrier mobility via effective mass and Fermi energy optimization. The Al substitution in LaCoO<jats:sub>3</jats:sub> not only enhances the electrical transport properties but also decrease the lattice thermal conductivity through enhanced phonon scattering originated from the lattice strain induced by huge mass fluctuation of Co and substituted Al atom. The results indicate that the electrical conductivity increase with increasing the Al substitution and the maximum value of 642 S cm<jats:sup>−1</jats:sup> was observed at 753 K and the maximum power factor (73.3 <jats:italic>µ</jats:italic>W m<jats:sup>−1</jats:sup>K<jats:sup>−2</jats:sup>) was achieved at 703 K for the sample LaCo<jats:sub>0.97</jats:sub>Al<jats:sub>0.03</jats:sub>O<jats:sub>3</jats:sub>. The Al-substitution enhanced the charge carrier mobility from 0.21 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> to 51.6 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> by decreasing the effective mass from 28.76*m<jats:sub>e</jats:sub> to 12.76*m<jats:sub>e</jats:sub>. The decreased carrier concentration with Al substitution is due to the upward shift of Fermi energy towards the conduction band. The lowest thermal conductivity value (0.87 W m<jats:sup>−1</jats:sup>K<jats:sup>−1</jats:sup>) was obtained at 303 K for the sample LaCo<jats:sub>0.95</jats:sub>Al<jats:sub>0.05</jats:sub>O<jats:sub>3</jats:sub>. The lattice thermal conductivity of LaCo<jats:sub>0.95</jats:sub>Al<jats:sub>0.05</jats:sub>O<jats:sub>3</jats:sub> (1.259 W m<jats:sup>−1</jats:sup>K<jats:sup>−1</jats:sup>) was reduced about 48% when compared with pure LaCoO<jats:sub>3</jats:sub> (2.437 W m<jats:sup>−1</jats:sup>K<jats:sup>−1</jats:sup>) at 753 K. The present work reveals the importance of decoupling the electrical and thermal transport properties in achieving high performance TE ceramics.</jats:p>

Topics
  • impedance spectroscopy
  • mobility
  • ceramic
  • thermal conductivity
  • electrical conductivity