Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bergin, Matthew

  • Google
  • 2
  • 17
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Complex optical elements for scanning helium microscopy through 3D printing12citations
  • 2021Temperature-modulated doping at polymer semiconductor interfaces1citations

Places of action

Chart of shared publication
Dastoor, Paul
1 / 7 shared
Myles, Thomas
1 / 1 shared
Barr, M.
1 / 1 shared
Fahy, Adam
2 / 6 shared
Eder, Sabrina Daniela
1 / 1 shared
Lambrick, S. M.
1 / 1 shared
Ward, David
1 / 1 shared
Hatchwell, C. J.
1 / 1 shared
Radić, A.
1 / 1 shared
Sharma, Anirudh
1 / 21 shared
Holmes, Natalie P.
1 / 5 shared
Griffith, Matthew J.
1 / 2 shared
Belcher, Warwick
1 / 7 shared
Elkington, Daniel C.
1 / 1 shared
Andersson, Mats R.
1 / 10 shared
Rysz, Jakub
1 / 16 shared
Dastoor, Paul C.
1 / 3 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Dastoor, Paul
  • Myles, Thomas
  • Barr, M.
  • Fahy, Adam
  • Eder, Sabrina Daniela
  • Lambrick, S. M.
  • Ward, David
  • Hatchwell, C. J.
  • Radić, A.
  • Sharma, Anirudh
  • Holmes, Natalie P.
  • Griffith, Matthew J.
  • Belcher, Warwick
  • Elkington, Daniel C.
  • Andersson, Mats R.
  • Rysz, Jakub
  • Dastoor, Paul C.
OrganizationsLocationPeople

article

Complex optical elements for scanning helium microscopy through 3D printing

  • Dastoor, Paul
  • Myles, Thomas
  • Bergin, Matthew
  • Barr, M.
  • Fahy, Adam
  • Eder, Sabrina Daniela
  • Lambrick, S. M.
  • Ward, David
  • Hatchwell, C. J.
  • Radić, A.
Abstract

<jats:title>Abstract</jats:title><jats:p>Developing the next generation of scanning helium microscopes requires the fabrication of optical elements with complex internal geometries. We show that resin stereolithography (SLA) 3D printing produces low-cost components with the requisite convoluted structures whilst achieving the required vacuum properties, even without <jats:italic>in situ</jats:italic> baking. As a case study, a redesigned pinhole plate optical element of an existing scanning helium microscope was fabricated using SLA 3D printing. In comparison to the original machined component, the new optical element minimised the key sources of background signal, in particular multiple scattering and the secondary effusive beam.</jats:p>

Topics
  • resin
  • microscopy