People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Levallois, Christophe
Institut National des Sciences Appliquées de Rennes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Photoelectrode/Electrolyte interfacial band lineup engineering with alloyed III-V thin films grown on Si substrate.citations
- 2023Mechanical and optical properties of amorphous silicon nitride-based films prepared by electron cyclotron resonance plasma-enhanced chemical vapor depositioncitations
- 2022Low-temperature spatially-resolved luminescence spectroscopy of microstructures with strained III-V quantum wells
- 2022Strain engineering in III-V photonic components through structuration of SiN x filmscitations
- 2021III-V/Si antiphase boundaries used as 2D-semimetallic topological vertical inclusions for solar hydrogen production
- 2021Stress Engineering of Dielectric Films on Semiconductor Substrates
- 2021Mechanical and Optical Properties of Amorphous SiN-Based Films Prepared By ECR-PECVD and CCP-PECVD
- 2021Low temperature micro-photoluminescence spectroscopy of microstructures with InAsP/InP strained quantum wellscitations
- 2021Low temperature micro-photoluminescence spectroscopy of microstructures with InAsP/InP strained quantum wellscitations
- 2021Mechanical strain mapping of GaAs based VCSELscitations
- 2020Random crystal polarity of Gallium phosphide microdisks on silicon
- 2020Photoluminescence mapping of the strain induced in InP and GaAs substrates by SiN stripes etched from thin films grown under controlled mechanical stresscitations
- 2019Towards MIR VCSELs operating in CW at RT
- 2019Electron-phonon interactions around antiphase boundaries in InGaP/SiGe/Si : structural and optical characterizations
- 2019Photoelectrochemical water oxidation of GaP 1−x Sb x with a direct band gap of 1.65 eV for full spectrum solar energy harvestingcitations
- 2019GaPSb/Si photoelectrode for Solar Fuel Production
- 2019GaPSb/Si photoelectrode for Solar Fuel Production
- 2018Excitons bounded around In-rich antiphase boundaries
- 2018Excitons bounded around In-rich antiphase boundaries
- 2018Chapter 28 - GaP/Si-Based Photovoltaic Devices Grown by Molecular Beam Epitaxycitations
- 2018Chapter 28 - GaP/Si-Based Photovoltaic Devices Grown by Molecular Beam Epitaxycitations
- 2018Antiphase boundaries in InGaP/SiGe/Si : structural and optical properties
- 2016Enhancement of VCSEL performances using a novel bonding process based on localized electroplating copper through Silicon vias
- 2016Enhancement of VCSEL performances using a novel bonding process based on localized electroplating copper through Silicon vias
- 2016Defect formation during chlorine-based dry etching and their effects on the electronic and structural properties of InP/InAsP quantum wellscitations
- 2014Monolithic Integration of Diluted-Nitride III–V-N Compounds on Silicon Substrates: Toward the III–V/Si Concentrated Photovoltaicscitations
- 2014Monolithic Integration of Diluted-Nitride III–V-N Compounds on Silicon Substrates: Toward the III–V/Si Concentrated Photovoltaicscitations
- 2013Structural and optical properties of AlGaP confinement layers and InGaAs quantum dot light emitters onto GaP substrate: Towards photonics on silicon applications
- 2013Structural and optical properties of AlGaP confinement layers and InGaAs quantum dot light emitters onto GaP substrate: Towards photonics on silicon applications
Places of action
Organizations | Location | People |
---|
article
Low temperature micro-photoluminescence spectroscopy of microstructures with InAsP/InP strained quantum wells
Abstract
Ridge microstructures were prepared by reactive ion etching (RIE) of a series of stacked InAs x P 1−x quantum wells (QWs) with step graded compositions grown on InP by molecular beam epitaxy. These microstructures were characterized by low temperature micro-photoluminescence. The photoluminescence (PL) emission associated with each of the QWs was clearly identified and a model for their line shape was implemented. PL line-scans were measured across etched ridge stripes of various widths in an optical cryostat, with a spatial resolution of 1 µm. The model for the PL spectra allowed accurate extraction of the local PL integrated intensities, spectral positions and line widths. Two different RIE processes, using CH 4 /H 2 and CH 4 /Cl 2 , were investigated. The PL line-scans showed strong variations of the integrated PL intensities across the etched stripes. The PL intensities for all QWs increased gradually from the edge to the center of the ridge microstructures, over a length scale of 10 to 20 µm. On the other hand, the spectral peak position of the PL lines remained constant (0.2 to 0.4 meV, depending on which QW was considered) across the microstructures. These observations are discussed in terms of the mechanical stress induced by the RIE processes, the relaxation of the biaxial built-in compressive stress in the InAsP QWs (induced by the free surfaces at the vertical etched sidewalls), and also by the non-radiative recombination at these sidewalls. Altogether, this study illustrates the contribution that specially designed test structures, coupled with advanced spectroscopic characterization, can provide to the development of semiconductor photonic devices (e.g. lasers or waveguides) involving RIE processing.