People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Trager-Cowan, Carol
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2022Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscope
- 2022Crystalline grain engineered CsPbIBr 2 films for indoor photovoltaicscitations
- 2022Crystalline grain engineered CsPbIBr2 films for indoor photovoltaicscitations
- 2020Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscopecitations
- 2020Nanomechanical behaviour of individual phases in WC-Co cemented carbides, from ambient to high temperaturecitations
- 2020Influence of micro-patterning of the growth template on defect reduction and optical properties of non-polar (112ˉ0) GaN
- 2020Metrology of crystal defects through intensity variations in secondary electrons from the diffraction of primary electrons in a scanning electron microscopecitations
- 2020Luminescence behavior of semipolar (10-11) InGaN/GaN "bow-tie" structures on patterned Si substratescitations
- 2020Influence of micro-patterning of the growth template on defect reduction and optical properties of non-polar (11-20) GaNcitations
- 2018Dislocation contrast in electron channelling contrast images as projections of strain-like componentscitations
- 2017Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffractioncitations
- 2017Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffractioncitations
- 2017Spatially-resolved optical and structural properties of semi-polar (11-22) AlxGa1-xN with x up to 0.56citations
- 2017Cross-correlation based high resolution electron backscatter diffraction and electron channelling contrast imaging for strain mapping and dislocation distributions in InAlN thin filmscitations
- 2017Exploring transmission Kikuchi diffraction using a Timepix detectorcitations
- 2016Reprint of
- 2016Optical and structural properties of GaN epitaxial layers on LiAlO2 substrates and their correlation with basal-plane stacking faultscitations
- 2016Electron channelling contrast imaging for III-nitride thin film structurescitations
- 2015Digital direct electron imaging of energy-filtered electron backscatter diffraction patternscitations
- 2013Electron channeling contrast imaging studies of nonpolar nitrides using a scanning electron microscopecitations
- 2012Imaging and identifying defects in nitride semiconductor thin films using a scanning electron microscopecitations
- 2008Rare earth doping of III-nitride alloys by ion implantationcitations
- 2004Development of CdSSe/CdS VCSELs for application to laser cathode ray tubes
- 2002Structural and optical properties of InGaN/GaN layers close to the critical layer thicknesscitations
- 2001Compositional pulling effects in InxGa1_xN/GaN layerscitations
Places of action
Organizations | Location | People |
---|
article
Influence of micro-patterning of the growth template on defect reduction and optical properties of non-polar (11-20) GaN
Abstract
We investigate the influence of different types of template micro-patterning on defect reduction and optical properties of non-polar GaN using detailed luminescence studies. Non-polar (11-20) (or a-plane) GaN exhibits a range of different extended defects compared with its more commonly used c-plane counterpart. In order to reduce the number of defects and investigate their impact on luminescence uniformity, non-polar GaN was overgrown on four different GaN microstructures. The micro-patterned structures consist of a regular microrod array; a microrod array where the -c-side of the microrods has been etched to suppress defect generation; etched periodic stripes and finally a subsequent combination of etched stripes and etched microrods (double overgrowth). Overall the presence of extended defects, namely threading dislocations and stacking faults (SFs) is greatly reduced for the two samples containing stripes compared with the two microrod samples. This is evidenced by more uniform emission and reduction in dark regions of non-radiative recombination in room temperature cathodoluminescence imaging as well as a reduction of the SF emission line in low temperature photoluminescence. The observed energy shifts of the GaN near band edge emission are related to anisotropic strain relaxation occurring during the overgrowth on these microstructures. A combination of stripes and microrods is a promising approach for defect reduction and emission uniformity in non-polar GaN for applications in light-emitting devices as well as power electronics.