Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gilbert, Sebastian

  • Google
  • 1
  • 4
  • 5

University of Birmingham

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020CASTLE: cell adhesion with supervised training and learning environment5citations

Places of action

Chart of shared publication
Chimen, M.
1 / 1 shared
Krautter, Franziska
1 / 1 shared
Cooper, D.
1 / 7 shared
Iqbal, Asif
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Chimen, M.
  • Krautter, Franziska
  • Cooper, D.
  • Iqbal, Asif
OrganizationsLocationPeople

article

CASTLE: cell adhesion with supervised training and learning environment

  • Chimen, M.
  • Krautter, Franziska
  • Cooper, D.
  • Gilbert, Sebastian
  • Iqbal, Asif
Abstract

<jats:title>Abstract</jats:title><jats:p>Different types of microscopy are used to uncover signatures of cell adhesion and mechanics. Automating the identification and analysis often involve sacrificial routines of cell manipulation such as <jats:italic>in vitro</jats:italic> staining. Phase-contrast microscopy (PCM) is rarely used in automation due to the difficulties with poor quality images. However, it is the least intrusive method to provide insights into the dynamics of cells, where other types of microscopy are too destructive to monitor. In this study, we propose an efficient workflow to automate cell counting and morphology in PCM images. We introduce Cell Adhesion with Supervised Training and Learning Environment (CASTLE), available as a series of additional plugins to ImageJ. CASTLE combines effective techniques for phase-contrast image processing with statistical analysis and machine learning algorithms to interpret the results. The proposed workflow was validated by comparing the results to a manual count and manual segmentation of cells in images investigating different adherent cell types, including monocytes, neutrophils and platelets. In addition, the effect of different molecules on cell adhesion was characterised using CASTLE. For example, we demonstate that Galectin-9 leads to differences in adhesion of leukocytes. CASTLE also provides information using machine learning techniques, namely principal component analysis and <jats:italic>k</jats:italic>-means clustering, to distinguish morphology currently inaccessible with manual methods. All scripts and documentation are open-source and available at the corresponding GitLab project.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • phase
  • clustering
  • machine learning
  • microscopy