People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Orgiani, Pasquale
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Pulsed laser deposition of La2/3Sr1/3MnO3 thin films: first experiments using a Nd-YAG laser
- 2024STEM exploration of 2DEG at TiO2/LaAlO3 interface
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo$_2$Al$_9$
- 2023Ion-induced lateral damage in the focused ion beam patterning of topological insulator Bi2Se3 thin filmscitations
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo 2 Al 9 (M = Sr, Ba)citations
- 2023Observation of termination-dependent topological connectivity in a magnetic Weyl kagome-latticecitations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics M Co 2 Al 9 ( M = Sr, Ba)citations
- 2023Observation of Termination-Dependent Topological Connectivity in a Magnetic Weyl Kagome Latticecitations
- 2023Observation of termination-dependent topological connectivity in a magnetic Weyl Kagome latticecitations
- 2023Flat band separation and resilient spin-Berry curvature in bilayer kagome metalscitations
- 2023Flat band separation and robust spin Berry curvature in bilayer kagome metalscitations
- 2023Flat band separation and robust spin Berry curvature in bilayer kagome metalscitations
- 2022Oxygen-Driven Metal–Insulator Transition in SrNbO 3 Thin Films Probed by Infrared Spectroscopycitations
- 2022Oxygen-Driven Metal–Insulator Transition in SrNbO3 Thin Films Probed by Infrared Spectroscopycitations
- 2022Orbital mapping of the LaAlO3-TiO2 interface by STEM-EELS
- 2022Field induced oxygen vacancy migration in anatase thin films studied by in situ biasing TEM
- 2021Omnipresence of weak antilocalization (WAL) in Bi2Se3 thin films: A review on its origincitations
- 2021Omnipresence of weak antilocalization (WAL) in Bi 2 Se 3 thin films:a review on its origincitations
- 2021Direct-ARPES and STM investigation of FeSe thin film growth by Nd:YAG lasercitations
- 2021Omnipresence of weak antilocalization (WAL) in Bi2Se3 thin films : a review on its origincitations
- 2021Direct-ARPES and STM Investigation of FeSe Thin Film Growth by Nd:YAG Lasercitations
- 2020Epitaxial strain and thickness dependent structural, electrical and magnetic properties of La 0.67 Sr 0.33 MnO 3 filmscitations
- 2020Tuning optical absorption of anatase thin lms across the visible/near-infrared spectral regioncitations
- 2020Analysis of Metal-Insulator Crossover in Strained {SrRuO}3 Thin Films by X-ray Photoelectron Spectroscopycitations
- 2020Direct insight into the band structure of SrNbO 3citations
- 2020Orbital Hybridization and Magnetic Coupling at Cuprate–Manganite Interfaces Driven by Manganite Dopingcitations
- 2020Epitaxial strain and thickness dependent structural, electrical and magnetic properties of La<sub>0.67</sub>Sr<sub>0.33</sub>MnO<sub>3</sub> filmscitations
- 2020Unveiling Oxygen Vacancy Superstructures in Reduced Anatase Thin Filmscitations
- 2020Direct insight into the band structure of SrNbO3citations
- 2020Direct insight into the band structure of SrNbO3citations
- 2019Room temperature biaxial magnetic anisotropy in La0.67Sr0.33MnO3 thin films on SrTiO3 buffered MgO (001) substrates for spintronic applicationscitations
Places of action
Organizations | Location | People |
---|
article
Epitaxial strain and thickness dependent structural, electrical and magnetic properties of La<sub>0.67</sub>Sr<sub>0.33</sub>MnO<sub>3</sub> films
Abstract
The crystal structural quality and the strain induced by the substrate strictly impose the magnetic and transport properties of La0.67Sr0.33MnO3 (LSMO) films. In particular, the magnetic anisotropy (MA) of epitaxial LSMO can be finely tuned by varying its thickness and by choosing single crystal substrates with suitable lattice mismatch with the film. Here, we have deposited LSMO films with thicknesses in the 12-50 nm range by pulsed laser deposition on different single crystal substrates inducing either compressive or tensile in-plane strain on the manganites. The epitaxial quality of films was quantified by ω-scans around (002) peak with full-width half-maximum (FWHM) values as low as 0.08° for films on the nearly matched NGO (110) substrate to 1.4° films on high mismatched MgO (001) substrate. As the epitaxial strain in thin-film increases, a significant reduction in metal-insulation transition (MIT) temperature (Tp) was observed. The magnetic properties of the films probed by Kerr magnetometry show that the symmetry of the room temperature MA varies significantly as a function of both strain and thickness. Specifically, we observed pure uniaxial MA on NGO (110) and pure biaxial MA on STO buffered MgO (001), whereas a spin reorientation from uniaxial in-plane to out-of-plane on LSAT (001) and uniaxial to nearly isotropic in-plane on STO (001) substrate as the film thickness is increased. We provide an efficient tool to tune the MA according to the specific spintronic application targeted.