Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hagemann, Ulrich

  • Google
  • 6
  • 37
  • 103

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024FeNi nanoparticle-modified reduced graphene oxide as a durable electrocatalyst for oxygen evolution1citations
  • 2023Microscale combinatorial libraries for the discovery of high-entropy materials28citations
  • 2022Preparation of N-doped carbon materials from cellulose:chitosan blends and their potential application in electrocatalytic oxygen reduction8citations
  • 2020Van der Waals epitaxial MOCVD-growth of (BixSb1-x)2Te3 (0<x<1) films15citations
  • 2020The effect of metal-oxide incorporation on the morphology of carbon nanostructures5citations
  • 2017Improving the zT value of thermoelectrics by nanostructuring46citations

Places of action

Chart of shared publication
Kallio, Tanja
1 / 38 shared
Khairani, Inna Yusnila
1 / 1 shared
Gökce, Bilal
1 / 15 shared
Ros, Carles
1 / 6 shared
Alonso, Beatriz
1 / 2 shared
Doñate-Buendía, Carlos
1 / 5 shared
Ortega, Amaya
1 / 2 shared
Martorell, Jordi
1 / 4 shared
Palardonio, Sidney M.
1 / 1 shared
Jin, Benjin
1 / 2 shared
Schuhmann, Wolfgang
1 / 100 shared
Andronescu, Corina
2 / 15 shared
Piotrowiak, Tobias
1 / 7 shared
Banko, Lars
1 / 26 shared
Kostka, Aleksander
1 / 39 shared
Krysiak, Olga
1 / 6 shared
Ludwig, Alfred
1 / 351 shared
Tetteh, Emmanuel Batsa
1 / 9 shared
Ropertz, Marcus
1 / 1 shared
Braun, Michael
1 / 5 shared
Ulbricht, Mathias
1 / 9 shared
Wittmar, Alexandra Smarandita Maria
1 / 3 shared
Schulz, Stephan
2 / 29 shared
Sonntag, Jens
1 / 1 shared
Assenmacher, Wilfried
1 / 6 shared
Bendt, Georg
1 / 7 shared
Lorke, Axel
2 / 4 shared
Woehrl, Nicolas
1 / 1 shared
Tigges, Sebastian
1 / 1 shared
Ney, Marcel
1 / 1 shared
Heimann, Stefan
1 / 4 shared
Loor, Manuel
1 / 1 shared
Schierning, Gabi
1 / 13 shared
Ünal, Derya
1 / 1 shared
Mudring, Anja-Verena
1 / 78 shared
Schaumann, Julian
1 / 3 shared
Maculewicz, Franziska
1 / 4 shared
Chart of publication period
2024
2023
2022
2020
2017

Co-Authors (by relevance)

  • Kallio, Tanja
  • Khairani, Inna Yusnila
  • Gökce, Bilal
  • Ros, Carles
  • Alonso, Beatriz
  • Doñate-Buendía, Carlos
  • Ortega, Amaya
  • Martorell, Jordi
  • Palardonio, Sidney M.
  • Jin, Benjin
  • Schuhmann, Wolfgang
  • Andronescu, Corina
  • Piotrowiak, Tobias
  • Banko, Lars
  • Kostka, Aleksander
  • Krysiak, Olga
  • Ludwig, Alfred
  • Tetteh, Emmanuel Batsa
  • Ropertz, Marcus
  • Braun, Michael
  • Ulbricht, Mathias
  • Wittmar, Alexandra Smarandita Maria
  • Schulz, Stephan
  • Sonntag, Jens
  • Assenmacher, Wilfried
  • Bendt, Georg
  • Lorke, Axel
  • Woehrl, Nicolas
  • Tigges, Sebastian
  • Ney, Marcel
  • Heimann, Stefan
  • Loor, Manuel
  • Schierning, Gabi
  • Ünal, Derya
  • Mudring, Anja-Verena
  • Schaumann, Julian
  • Maculewicz, Franziska
OrganizationsLocationPeople

article

The effect of metal-oxide incorporation on the morphology of carbon nanostructures

  • Woehrl, Nicolas
  • Hagemann, Ulrich
  • Tigges, Sebastian
  • Ney, Marcel
  • Lorke, Axel
Abstract

<jats:title>Abstract</jats:title><jats:p>Metal-organic, single-source, low-temperature, morphology-controlled growth of carbon nanostructures is achieved, using an inductively coupled plasma-enhanced chemical vapor deposition system. Three distinctive morphologies, namely nanoflakes, nanowalls (CNWs) and nanorods (and intermediates between these morphologies), can be reproducibly deposited, depending on the process parameters. The synthesized structures can be described as hybrid materials consisting of metal oxide incorporated in a carbon matrix material. Since the incorporation of metal oxide into the carbon structure significantly influences their growth, the synthesis cannot be described solely with the existing models for the growth of CNWs. Optical emission spectroscopy is used to measure the relative number density of suspected growth and etching species in the plasma, while physical and chemical surface analysis techniques (scanning electron microscopy, Raman spectroscopy, scanning Auger microscopy and x-ray photoelectron spectroscopy) were employed to characterize the properties of the different nanostructures. Therefore, by using methods for both plasma and surface characterization, the growth process can be understood. The precursor dissociation in the plasma can be directly linked to the deposited morphology, as the incorporation of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> into the nanostructures is found to be a major cause for the transition between morphologies, by changing the dominant type of defect within the carbon structure.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • morphology
  • surface
  • Carbon
  • x-ray photoelectron spectroscopy
  • etching
  • defect
  • Raman spectroscopy
  • chemical vapor deposition
  • scanning auger microscopy